
Three Laws Learned from Web-scale Reasoning

Jacopo Urbani
Department of Computer Science

Vrije Universiteit Amsterdam, The Netherlands
jacopo@cs.vu.nl

Abstract
Reasoning on a web-scale is one of the most important prob-
lems of the emerging semantic web. In this short paper, we
look into our previous experience in this field to identify
whether there are important lessons that we have learned so
far. From this process, we extracted three important princi-
ples that we identified as three “laws” that arguably hold on
the current Semantic Web.
We believe that these “laws” can be useful to solve the re-
maining issues that still prevent the applicability of reasoning
on a web-scale. To this end, we briefly analyze two of such
issues, performance prediction and reasoning approximation,
and explain how these three laws can drive the research to-
wards a truly reason(able) Web.

Introduction
The problem of web-scale reasoning is a crucial obstacle
in transforming the original vision of a “Semantic Web”
into reality. The current amount and the exponential growth
of semantic web data call for high-performance reasoning
methods that can be applied over very large inputs such as
the entire Web.

This problem can be tackled at different levels, which
range from a theoretical analysis to the physical implemen-
tation. At each of these levels, web-scale reasoning poses
several research questions of a fundamental importance. For
example, from a theoretical perspective it is important to
define algorithms with a computational complexity that re-
mains afforded on a large scale. On a lower and more tech-
nical level, engineering-related research questions that are
concerned with, for example, efficient storage and retrieval
of the data, become more relevant and have a high-priority.

Because of multi-level nature of this problem, extensive
research must be conducted at every level to provide a gen-
eral and elegant solution to each of its issues. In this context,
we argue that research should not only be conducted “intra-
level”, but also “inter-level” because findings discovered at
one particular level might be useful also at the other ones.
For example, high-level research (e.g. an analysis or a stan-
dardization process) might benefit from being aware of what
works and what does not when reasoning is implemented on
a large scale.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To facilitate an “inter-level” research, in this paper we
take a distance from our previous technical contribution,
and analyze it from a higher perspective, with the inten-
tion of abstracting it into some high-level considerations that
might serve to this purpose. To this end, it is important to
choose the right level of abstraction: in fact, if we abstract
too much then our conclusions might become either trivial
or too vague. In contrast, if we do not abstract enough then
such conclusions might loose their potential of being useful
in a different context.

Given such premises, we decided to reformulate a number
of practical considerations that arose from our experience as
three laws that we believe hold in our context and perhaps
even in a more general setting. We title these laws as follows:

• 1st Law: Treat schema triples differently;

• 2nd Law: Data skew dominates the data distribution;

• 3rd Law: Certain problems only appear at a very large
scale.

We must warn the reader that there is a degree of specu-
lation in our claims since such laws are only based on initial
empirical findings. Therefore, they should be seen more as a
number of lessons learned from experience instead of abso-
lute laws that hold in all their generality.

At this point, the reader might find the word “law” mis-
used in such context, and wonder why we do not simply
refer to them as “lessons”. Such concern might be partly fu-
eled by the fact that in a scientific world we mainly deal with
natural laws, which require much more than initial empirical
evidence to be accepted as true.

In our case, the reason why we call them laws rather than
lessons is two-fold: Firstly, we believe that the importance
that these “lessons” have in the current research landscape
is such that their application is mandatory, and by using the
word law we intend to remark the unavoidable constraint
that they pose.

Secondly, we believe that such laws are (partly) due to
precise choices of the scientific community of representing
the knowledge with the current semantic technologies in-
stead than with others. Therefore, we appeal to the juridical
meaning of “law”, and propose them as implicit laws that
follows the more explicit laws such as, for example, the ones
defined in standardized RDF and OWL languages.

76

Semantics for Big Data 
AAAI Technical Report FS-13-04



In the following sections, we discuss each of these laws in
more detail. After this, we briefly introduce two important
problems of web-scale reasoning and discuss how such laws
can help us in finding a solution for them.

1st Law: Treat schema triples differently
In our previous works (Urbani et al. 2012a; 2011; 2012c),
and in (Weaver and Hendler 2009), the reasoning pro-
cess makes a fundamental difference in handling the
schema triples from the other ones. With schema triples
we generically refer to those triples that define the do-
main of the knowledge. This distinction is very simi-
lar (if not identical) to the T-Box and A-Box distinction
in description logic. For example, the triple (:Student
:subclassOf :Person) is a schema triple because it
simply states that all students are also persons.

In both works, the schema triples are always replicated on
each node and loaded in main memory to minimize the data
transfer during the computation. In contrast, generic triples
are not being replicated but rather partitioned according to
some criteria. This division is beneficial for the computation:
it reduces the data transfer and allows the implementation of
clever techniques to speed up the execution. In doing so, we
heavily rely on the assumption that the generic triples sig-
nificantly outnumber the schema triples on the Web. How-
ever, although the number of these triples is small, they are
fundamentally important because they are frequently used
in inference rules as they appear in almost all of the rules
antecedents.

Sometimes, determining the set of all the schema triples is
a difficult operation. This is not the case with WebPIE (Ur-
bani et al. 2012a), because in there schema triples can only
be derived after the execution of MapReduce jobs which
store the output in files. Since the data resides on a dis-
tributed file system, it is simple to retrieve it in the following
reasoning steps. However, for backward-chaining reasoning
described in (Urbani et al. 2011; 2012c) the situation is not
so simple, because schema triples can be inferred at a later
stage. This required us to introduce a procedure at the be-
ginning of the computation (and provide for a theoretical
ground to verify its correctness) to ensure that this operation
is performed without loosing derivations.

Regardless of how challenging it is to calculate the set of
schema triples, in both cases empirical evaluation shows that
treating schema triples differently is beneficial to increase
the performance. Therefore, in our first law we state that rea-
soning methods should make a distinction between schema
and other triples in designing the reasoning algorithms. Ap-
plying this law allows the application of several optimiza-
tions to make the computation more efficient and scalable.

2nd Law: Data skew dominates the data
distribution

In the previous law we stressed the importance of the schema
triples and reported on our strategy of replicating them on
all the nodes, under the assumption that the number of these
triples is small on realistic data.

In this law, we focus instead on the generic triples. Since
a large collection of data contains many of them, a strat-
egy based on replication and loading into main memory is
not acceptable because the local space on single machines is
likely not large enough. Therefore, we are obliged either to
store the data on disk or to partition the input across several
machines.

From a high-performance point of view, the last option
is preferable since network access is often faster than disk
access. In this case, the partitioning criterion has a funda-
mental importance in determining the overall performance
of the system. Unfortunately, there is no universal partition-
ing scheme that fits all needs, and the chosen criterion deter-
mines how and, (even more important) where the computa-
tion occurs.

For example, in MapReduce the data is stored in files that
reside on the distributed filesystem HDFS where raw data
blocks are replicated on a limited number of nodes (three by
default). When the Hadoop scheduler receives a request of
executing a map task, it schedules it on one of the nodes that
has the input locally stored. In this way, Hadoop moves the
computation rather than the data and this limits the problem
of large data transfer. This is an example of how the parti-
tioning of the data influences the computation because if the
data would not be equally split among the nodes, then the
scheduler would not be able to provide for an effective way
to parallelize this operation.

Our experiments confirms a finding described in (Ko-
toulas et al. 2010) that current Web data is highly skewed
and this makes it more difficult to choose a partitioning cri-
terion to impose a fair balancing of the computation between
the machines. Therefore, the impact of data skewness is of
great importance on the overall performance and should not
be underestimated.

In WebPIE (Urbani et al. 2012a; 2012b), we tackled the
problem of data skewness in several ways. First, we sample
the data to determine which terms can introduce a load bal-
ancing problem. Furthermore, we reduce the effect of data
skewness by partitioning the data using more than one re-
source, to avoid cases where the data is grouped by a single
popular resource.

Furthermore, we have observed that data skewness does
not always occur. From our empirical analysis, we noticed
that skewness appears more frequently on the distribution
of the predicates and the objects rather than on the sub-
jects. This means that while there is not a large variance in
the number of triples that share the same subject, there is
a much larger difference in the number of triples that share
the same predicate or object (think for example about all
the (rdf:type) triples). Such a consideration can drive
an implementation where, given a generic input query, data
is accessed through the subjects rather than the predicates
or objects. Also, the current structure of web data can be
used to optimize other tasks than reasoning: For example,
in (Neumann and Moerkotte 2011) such principle is used to
build characteristic sets, which are sets of features that are
used to describe large subgraphs of the input.

77



3rd Law: Certain problems only appear at a
very large scale

In the context of web-scale reasoning, an empirical evalua-
tion of the performance is crucial to assess how the methods
would perform in a real scenario. In fact, even though a the-
oretical analysis provides for a good metric to establish the
properties of a method, modern computer architectures are
very complex and only an experimental evaluation can de-
termine whether one approach indeed “works”.

In this context, building a prototype that is able to deal
with a massive amount of data is not an easy task. In de-
veloping the prototypes used for our experiments we had to
address many technical issues and we noticed how particu-
larly important the implementation of a specific algorithm is
in order to evaluate its scalability and real performance.

From a research point of view, we are tempted to con-
sider such issues as unimportant because they often do not
introduce any theoretical research question. As a result, re-
searchers frequently implement simple prototypes and use
them to verify the quality of their contribution. We argue that
on a web-scale such approach would be a dangerous mis-
take, because certain problems appear only at a very large
scale (e.g. data skewness) and if the prototype is unable to
scale to this extent, then we are unable to verify what is in-
deed its real performance.

Because of this, we argue that simple proof-of-concepts
often do not implement all the necessary elements to be rep-
resentative. To support our claim, we report some considera-
tions about the development of our prototypes, WebPIE and
QueryPIE, highlighting why some purely engineering issues
played a fundamental role in achieving high performance.
Such issues are not typical of our specific case but are com-
monly known in the domain of high-performance applica-
tions. Therefore, discussing them is certainly relevant and
potentially useful for similar problems in our domain.

Complexity of the prototype. First of all, both WebPIE
and QueryPIE are written in Java and consist of respectively
about 15 and 27 thousand lines of code. The amount of lines
can already give an impression of the complexity of the pro-
totypes. We chose Java because all the supporting frame-
works and libraries (namely Hadoop and Ibis) were written
with this language.

Memory management. The main limitation of using Java
for our purpose consisted of the automatic garbage collec-
tor, which is an excellent feature of the language but with
the limitation that it cannot be controlled by the program-
mer. Because of this, we developed algorithms that avoided
to create new objects but rather reuse existing ones to reduce
the impact of the garbage collection phase. Furthermore,
since web-scale reasoning is essentially a data-intensive
problem, an efficient memory management strategy is al-
most always necessary in order to exploit all the resources
of the hardware. In our case, we realized that some standard
Java data structures were not appropriate since they become
prohibitively expensive if the input is too large. For example,
already storing a few millions of objects in the standard Java
Hash-map was enough to fill several gigabytes of space in
main memory. To solve this problem, we had to implement

custom hash maps which were less memory expensive and
rely on data marshaling on byte buffers to avoid the creation
of new objects.

Tuning the parameters. Finally, tuning the configuration
of the execution environment has also proven to be crucial in
the evaluation. For example, the number of Hadoop mappers
and reducers per node or the activation of the data compres-
sion for the intermediate results can radically change the per-
formance of WebPIE. In QueryPIE, the size of some internal
buffers turned out to be a very important parameter, because
larger buffers are more difficult to allocate (and might re-
quire a call to the garbage collector), while smaller ones get
quickly filled.

All these considerations are examples of the purely tech-
nical problems that we had to solve. These do not have
a real scientific value since they are well-known in high-
performance computing. Nevertheless, they are necessary
components in the scientific process and this makes the
problem of web-scale reasoning very vulnerable to software
engineering issues.

We would like to point out that this “law” has substantial
consequences for the evaluation. For example, it is impos-
sible to perform a formal verification of a complex imple-
mentation, and the correctness can be measured only with
an empirical analysis. Also, more complex implementations
have higher chances to contain bugs (current estimates indi-
cate that industry-delivered code contains on average 10-50
bugs per 1000 lines of code1).

Nevertheless, in the context of web-scale reasoning too
many external factors can influence the performance, and
each of them must be properly addressed. Because of this,
with our third and final law we intend to redefine reason-
ing not only as a theoretical research question but also as an
important engineering problem. In doing that, we aim to ele-
vate the engineering efforts that are necessary to implement
web-scale reasoning as an important contribution to solve
this problem, since they might radically change the evalua-
tion and therefore mislead the judgment over the quality of
the proposed method.

Towards a Reasonable Web
Even though latest developments in this research area have
shown that web-scale reasoning is indeed possible, there are
still important open issues that prevent us from having a
truly reason(able) Web.

Lack of Performance Prediction Techniques. One major
problem that we currently have is that we are unable to pre-
dict the performance of reasoning beforehand. In fact, there
can be cases for which reasoning might become so computa-
tionally expensive to be simply unfeasible with current tech-
nologies. This can happen for example when there are mis-
takes in the input or when the query is very complex.

To the best of our knowledge, there is a lack of effective
methods to detect such cases, and this prevents us to design
reasoning algorithms that are robust enough to properly han-
dle such cases. To this end, we must first define a proper

1http://amartester.blogspot.nl/2007/04/bugs-per-lines-of-
code.html

78



cost model for reasoning, where each operation is ranked in
terms of difficulty. In this case, we can consider the first law
and assume that the reasoning engine has already calculated
the closure of the schema. This allows us to give a lower cost
to the operation of processing such information.

In a similar way, the third law encourages us to define
the cost model considering also the actual implementation
of the algorithm. For example, retrieving data from a Java
Hash-map has a constant cost. On the contrary, if we use a
Java Tree-map the cost is O(log2n). Such details should not
be ignored, otherwise and accurate estimate is not possible.

In some cases, calculating the cost of reasoning might not
be possible since parameters such as n might not be known.
For example, suppose that one algorithm might request the
storage of a subset of the input like all the “rdf:type” triples
in a temporary Tree-map. Here, we are unable to estimate
the cost unless we physically count all the “type” triples.

To solve this issue, we need to apply statistical methods to
estimate n. In this case, the second law becomes very impor-
tant since it warns that current data has high skewness, and
therefore the statistical method should take this into account
to provide for an accurate estimate.

Reasoning Approximation. Once we have estimated the
computation, reasoning might still turn out to be unfeasible.
This can frequently happen on the Web, since corrupted data
can generate exponential number of derivations (Hogan,
Harth, and Polleres 2009). In these cases, several types of
approximation can be applied to reduce the computation.
For example, we can avoid computation that is most likely
redundant, or which will most likely fail. Furthermore, an-
other type of approximation would calculate only “interest-
ing” derivations and discard the “trivial” ones (notice that in
this case we are required to first define what is “interesting”
and what is “trivial”).

Also in this case the three laws can help us in developing
more effective techniques. For example, the first law can be
exploited to verify whether some computation leads to some
conclusion exploiting the availability of the schema. In our
previous work (Urbani et al. 2011), we applied this principle
to prune the reasoning during backward-chaining, but such
process can be “relaxed” to consider cases where the com-
putation will most likely fail.

The second law allows another type of approximation,
which considers the high skewness of the data to avoid triv-
ial derivation. In this case, we could define “trivial” as the
conclusions that could be derived from a process that was
applied on a large part of the input (e.g. the inference that
concludes that every subject is a rdfs:Resource). This law
facilitates the detection of the triples than can trigger such
“trivial” reasoning by looking at the few frequent terms. This
makes such approximation faster and more effective.

Finally, the third law can drive the approximation to con-
sider not only the reasoning algorithm, but also its imple-
mentation. For example, suppose that reasoning is imple-
mented in a distributed setting, where the data can be re-
trieved either from main memory (fast), network (slower), or
disk (slowest). In this case, the approximation method could
apply reasoning only on the data that is stored in main mem-

ory, and avoid more expensive operations like reading from
disks or the network.

Conclusions
In this short paper we propose three laws which we learned
in studying the problem of applying reasoning on a web-
scale. These laws concern the difference between schema
and generic information, the skewness of the data, and the
importance of the actual implementation.

Even though these laws might not be universally true, we
believe that they hold on the current (semantic) web, and
therefore they can contribute in solving the major issues that
prevent us from having a truly “reason(-able) web”. To this
purpose, we briefly outlined how they could have been ex-
ploited for two of such problems, which are the inability to
estimate the complexity of reasoning and the consequent ap-
proximation if the computational resources are insufficient.

Extensive research is still necessary to solve the ultimate
problem of web-scale reasoning, and the abstraction of tech-
nical contributions in terms of more abstract principles can
be a useful and effective practice to reach this goal. There-
fore, we hope that more of such laws will be discovered. It is
time that the “constitution” of web-scale reasoning is finally
being written.

References
Hogan, A.; Harth, A.; and Polleres, A. 2009. Scalable Au-
thoritative OWL Reasoning for the Web. International Jour-
nal on Semantic Web and Information Systems 5(2).
Kotoulas, S.; Oren, E.; van Harmelen, F.; and van Harme-
len, F. 2010. Mind the Data Skew: Distributed Inferencing
by Speeddating in Elastic Regions. In Proceedings of the
International World-Wide Web Conference, 531–540.
Neumann, T., and Moerkotte, G. 2011. Characteristic sets:
Accurate cardinality estimation for rdf queries with multiple
joins. In Proceedings of the International Conference on
Data Engineering, 984–994.
Urbani, J.; van Harmelen, F.; Schlobach, S.; and Bal, H. E.
2011. QueryPIE: Backward Reasoning for OWL Horst over
Very Large Knowledge Bases. In Proceedings of the Inter-
national Semantic Web Conference (ISWC), 730–745.
Urbani, J.; Kotoulas, S.; Maassen, J.; Harmelen, F. V.; and
Bal, H. 2012a. WebPIE: A Web-scale Parallel Inference En-
gine using MapReduce. Journal of Web Semantics 10(0):59
– 75.
Urbani, J.; Maassen, J.; Drost, N.; Seinstra, F.; and Bal, H.
2012b. Scalable RDF data compression with MapReduce.
Concurrency and Computation: Practice and Experience.
Urbani, J.; Piro, R.; van Harmelen, F.; and Bal, H. 2012c.
Hybrid Reasoning on OWL RL. Under submission to
the Semantic Web Journal. Available online at http://bit.ly/
19JxrJl.
Weaver, J., and Hendler, J. 2009. Parallel Materialization
of the Finite RDFS Closure for Hundreds of Millions of
Triples. In Proceedings of the International Semantic Web
Conference (ISWC).

79




