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Abstract. The size and growth rate of the Semantic Web call for query-
ing and reasoning methods that can be applied over very large amounts
of data. In this paper, we discuss how we can enrich the results of queries
by performing rule-based reasoning in a top-down fashion over large RDF
knowledge bases.

This paper focuses on the technical challenges involved in the top-
down evaluation of the reasoning rules. First, we discuss the application
of well-known algorithms in the QSQ family, and analyze their advan-
tages and drawbacks. Then, we present a new algorithm, called RDF-SQ,
which re-uses different features of the QSQ algorithms and introduces
some novelties that target the execution of the OWL-RL rules.

We implemented our algorithm inside the QueryPIE prototype and
tested its performance against QSQ-R, which is the most popular QSQ
algorithm, and a parallel variant of it, which is the current state-of-the-
art in terms of scalability. We used a large LUBM dataset with ten billion
triples, and our tests show that RDF-SQ is significantly faster and more
efficient than the competitors in almost all cases.

1 Introduction

The ability to derive implicit and potentially unknown information from graph-
like RDF datasets [8] is a key feature of the Semantic Web. This process, infor-
mally referred to as reasoning, can be performed in several ways and for different
purposes. In this paper, we focus on the application of reasoning to enrich the
results of SPARQL queries [14] by deriving implicit triples that are relevant
for the query, and restrict our focus to rule-based reasoning in the OWL 2 RL
fragment.

In this context, one method to perform reasoning is traditionally referred to
as backward-chaining. The main idea behind backward-chaining is to rewrite the
input query in a number of subqueries whose results can be used by the rules
to calculate implicit answers. Backward-chaining is often implemented with a
top-down evaluation of the rules, where the “top” is the input query and the
“bottom” consists of the queries that cannot be rewritten.

We consider the top-down algorithms designed for the Datalog language [2]
because almost all rules in OWL 2 RL can be represented with this language. In
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Datalog, the most popular algorithms in this category belong to the QSQ fam-
ily [2,4], which consists of a series of algorithms that implement the well-known
SLD-resolution technique [9]. These algorithms differ from each other because
their computation can be either recursive or iterative, tuple or set oriented,
sequential or parallel, or with or without adornments.

Regardless of the chosen algorithm, a common problem of backward-chaining
is that reasoning is performed under tight time constraints (since typically the
user waits until the query is computed) and the computation might become too
expensive to guarantee an acceptable response time. On the Web, this problem is
worsened by the fact that the size of current RDF datasets increases continuously.
Therefore, it is paramount to develop scalable inference techniques to provide
answers to the user in a timely manner.

To address this problem, we studied the salient characteristics of the exist-
ing QSQ algorithms, and designed a new algorithm in this family – which we
call RDF-SQ – that is tailored to the characteristics of the OWL rules and
RDF datasets. This algorithm contains several novelties: First, it exploits a pre-
materialization of the terminological knowledge and uses it to divide the OWL
rules in four different categories depending on the number and type of literals in
their body. Each category is implemented in a different way, exploiting the pre-
materialization and some heuristics that hold on current RDF datasets. Second,
it introduces a new rules evaluation order that interleaves the execution of rules
of the first two categories with rules of the last two. The first two categories of
rules are executed in parallel, with the goal of collecting as much inference as
possible, while the other two are executed sequentially. In doing so, our algo-
rithm interleaves parallel and sequential computation in order to achieve higher
efficiency and better utilization of modern hardware.

We tested the performance of our implementation against QSQ-R, the most
well-known implementation, and a parallel variant of it that was recently applied
over very large RDF knowledge bases. We used as a test ruleset a large fragment
of the OWL-RL rules. Our experiments show that RDF-SQ outperforms both
algorithms significantly, allowing in this way the execution of SPARQL queries
with complex inference over very large knowledge graphs with more than ten
billion triples.

2 Background

We assume a basic familiarity with the RDF data model [8]. Typically, users
query RDF graphs using the SPARQL language [14], which can be seen as a
SQL-like language to retrieve and process sub-portions of the RDF graphs.

SPARQL is a complex and rich language, but every SPARQL query can be
represented at its core as a graph pattern, and its execution can be translated
into a graph matching problem [14]. In this paper, we consider the most popular
type of SPARQL queries, which are the ones that can be mapped with basic
graph patterns (BGP). These graph patterns are simply defined as a finite set of
triple patterns, which are members of the set (T ∪V )× (I ∪V )× (T ∪V ), where
T is a finite set of RDF terms, V of variables, and I ⊆ T is the set of IRIs.
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We use the Datalog language to formalize the process of inferring new infor-
mation from the input. Due to space constraints we only briefly introduce key
concepts in this language and refer the reader to [2] for a complete overview.
A generic Datalog rule is of the form R1(w1) ← R2(w2), R3(w3), ..., R(wn). The
left-hand side of the arrow is called the head of the rule, while the right-hand
side constitutes the rule’s body. We call each Rx(wx) with x ∈ {1..n} a literal,
which is composed of a predicate (Rx) and a tuple of terms wx := t1, ..., tm.
Predicates can be either intensional (idb) or extensional (edb), and only inten-
sional predicates can occur in the head of a rule. Each Datalog term can be
either a variable or a constant (in this paper, variables are always indicated with
capital letters to distinguish them from the constants). We call a literal a fact if
the tuple contains only constants. We say that a fact f instantiates a literal l if
every constant in l is equal to the constant at the same position in f , and there
is an unique mapping between each variable in l and a corresponding constant
at the same position in f . Consequently, the instantiation f ← f1, f2, . . . , fn of
a rule is a sequence of facts where the mapping from constants to variables is
unique across the entire rule.

In Datalog, instantiations of rules are typically calculated through the manip-
ulation of substitutions, which map variables to either constants or other vari-
ables and are calculated using special functions (called θ in this work). Sets
of substitutions can be joined together (��) or retrieved from a database of
facts using a generic function called lookup. An unifier is a special substitu-
tion between two literals that is often used to verify whether the head of a rule
can produce instantiations for a given literal. A unifier that is no more restrictive
than needed is called a most general unifier (MGU ). In this work, we use the
usual definitions of these concepts. Their formal definition, and all other Datalog
concepts not explicitly defined in this paper, can be found in [2,4,21].

Given a generic database I which contains a finite set of Datalog facts and a
ruleset R, we say that a fact f is an immediate consequence of I and R if either
f ∈ I or there exists an instantiation f ← f1, f2, . . . , fn of a rule in R where all
fi are in I. Calculating all immediate consequences with a rule r is a process
that we refer to as the evaluation of rule r. We define TR as a generic operator
that calculates all immediate consequences so that TR(I) contains all immediate
consequences of I and R. Let T 0

R(I) := I, T 1
R = TR(I) and for each i > 0 let

T i
R(I) := TR(T i−1

R (I)). Since TR is a monotonic operator, and no new symbol is
generated, there will be an i where T i

R(I) = T i−1
R (I). We call this database the

fixpoint of I and denote it with Tω
R(I).

The goal of our work is to answer SPARQL queries over Tω
R(I). To this end,

two main techniques are normally adopted: The first technique, called forward-
chaining, stems from fixpoint semantics and consists of calculating the entire
Tω

R(I) and then (re)using the extended database to answer the SPARQL query.
Forward-chaining is often implemented with a bottom-up evaluation of the rules,
which consists of a repetitive evaluation of the rules over augmented versions
of the database. This technique has been explored extensively in literature and
there are several systems that implement this type of reasoning with different
degrees of expressivity [7,12,18,19,27–29].
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The second technique is called backward-chaining (or query rewriting), and is
the focus of this work. It adopts a proof-theoretic approach and calculates only
the subset of Tω

R(I) necessary to answer the query. For the purposes of query
answering, backward-chaining is efficient because it does not always calculate
the entire derivation like forward-chaining. For this reason, backward-chaining
is adopted in large-scale RDF query engines like Virtuoso [6], 4Store [17],
QueryPIE [22], or Stardog [15].

Backward-chaining is normally implemented with a top-down rules evalua-
tion (a notable exception is represented by the Magic Set technique [3], which
can be seen as backward-chaining performed with a bottom-up evaluation). We
illustrate the functioning of a typical top-down algorithm with a small example.

Example 1. Suppose that the Datalog query Q := (A, typ, person) must be eval-
uated using a ruleset R on a database I that contains RDF triples encoded as a
ternary relation T . We report the content of I and R below:

Database I

T(a,has grade,3), T(d,has grade,null), T(b,has grade,6),
T(student,sc,scholar) T(c,has grade,7), T(greater,typ,trans)
T(7,greater,6), T(scholar,sc,person) T(6,greater,3),
T(has grade,dom,student)

Ruleset R

R1 := T (A, sc, C) ← T (A, sc,B), T (B, sc, C)
R2 := T (A, typ, C) ← T (B, sc, C), T (A, typ,B)
R3 := T (A, typ, C) ← T (P, dom,C), T (A,P,B)
R4 := T (A,P,C) ← T (P, typ, trans),

T (A,P,B), T (B,P,C)

In general, a top-down algorithm would first identify which rules might
produce some answers. In our example, these are R2, R3, R4. Then, it would
launch a number of subqueries necessary to execute the rules. In our case, R2

would require the results of the query T (B, sc, person), R3 of T (P, dom, person),
and R4 of T (typ, typ, trans). These subqueries might either trigger other rules
or return no result. In our example, the first subquery would trigger R1

which would first read T (scholar, sc, person) and consequently request the
subquery T (B, sc, scholar) in order to calculate the triples that instantiate
T (B, sc, person). In our case, R1 would return the fact T (student, sc, person) to
R2, which could use this fact to issue another subquery T (A, typ, student). This
last subquery would trigger rule R3, which would return the facts that a, b, c, d
are students back to R2. At this point, R2 would use this information to infer
that a, b, c, d are of type person and return these facts as answers to the original
query. �

Unfortunately, a major problem of backward-chaining is that the number of
subqueries might become too large to provide all answers in a timely manner. To
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reduce this issue, backward-chaining algorithms often use tabling to reduce the
number of evaluations. Tabling is a particular technique of memoization [16] and
consists of caching the results of previously evaluated queries and reuse them
if needed. Tabling can be either transient in case it is maintained only during
the query execution, or permanent if the results are being reused across multiple
queries.

3 RDF-SQ

In Datalog, the most popular type of top-down algorithms are the ones in the
QSQ family [4]. The most popular QSQ algorithm is called QSQ-R and was pre-
sented in 1986 [23]. QSQ-R is a recursive sequential algorithm, which exhaus-
tively evaluates each subquery before it returns the results to the rule that
generated it. In this way, it can exploit tabling efficiently.

Parallel and distributed versions of QSQ have been proposed in [1,21]. The
last contribution is particularly interesting since it weakens the admissibility
test and lemma resolution in SLD/AL – that is the theoretical foundation upon
which QSQ-R and QoSaQ are based [25,26] – by allowing the rewriting of equiv-
alent queries in case they do not share any parent query except the root. This
choice is clearly less efficient than QSQ-R, since the latter does not perform
this redundant computation, but it has the advantage that it can run in parallel
without expensive synchronization.

In this landscape, our contribution consists of a new algorithm, called RDF-
SQ, which is inspired by these methods but is especially designed to execute
the OWL RL rules. It introduces novelties that exploit characteristics of current
RDF data, and reuses features of existing QSQ algorithms in an intelligent way.
We can summarize the following as its salient features:

– Rules are divided into four categories, and the evaluation of rules in each
category is implemented with different algorithms;

– Both permanent and transient tabling are used extensively: Terminological
knowledge is pre-materialized beforehand as described in [21], and intermedi-
ate results are cached in main memory and reused during the process;

– The algorithm interleaves sessions where the rules are evaluated in parallel,
and sessions where the rules are evaluated sequentially. This strategy seeks
the best compromise between tabling and parallel computation.

In the following we describe RDF-SQ in more detail. First, we describe the
categorization of the rules. Then, we give an informal description and report
the pseudocode. Finally, we analyze the fundamental properties of termination,
soundness, and completeness.

3.1 RDF-SQ: Rule Categories

When the database is loaded, the first operation performed by the system con-
sists of pre-materializing all triples that instantiate a number of predefined idb
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literals using the procedure described in [21]. The goal of this procedure is to
avoid a redundant inference upon the same literals during the execution of mul-
tiple queries. Therefore, we can see it as a form of permanent tabling: In fact, the
results of this pre-materialization are intended to be kept in main memory so that
they can be easily retrieved. During the pre-materialization, the original rules are
being rewritten by replacing the predicates of the pre-materialized literals with
an edb predicate that cannot trigger further inference. It has been shown that
this rewriting is harmless (after the pre-materialization), and inference using the
rewritten rules produces the same derivation(s) as with the original ones [21].
Therefore, our algorithm uses the rewritten rules instead of the original ones.

Before we describe our algorithm, we introduce a categorization of rules into
four disjoint categories depending on the number and type of literals they use.
We also outline how the categories of rules are implemented in our system, since
these two elements are instrumental in understanding the main intuition that
motivates our method. In the following, we describe each category in more detail.

Category 1. This category contains all rules that have, as body literals, a fixed
number of extensional predicates. These are mostly the pre-materialized literals.
An example is R1 of Example 1. In this case, all triples that instantiate the
bodies of these rules are already available in main memory. Therefore, during
the rule evaluation we calculate the rule instantiations by performing a number of
nested loop joins [5] followed by a final projection to construct the instantiations
of the head.

Category 2. This category contains all rules that have as body literals one or more
pre-materialized literals and exactly one non-materialized literal. Two examples
are rules R2 and R3 of Example 1.

These rules are more challenging than the previous ones because their evalu-
ation requires one relational join between a set of tuples that is available in main
memory and generic triples that might reside on disk. In our implementation,
the pre-materialized triples are indexed in main memory, and a hash-based join
is executed as new generic triples are being fetched either from the knowledge
base or from other rules.

Categories 3 and 4. The third category contains rules with two or more fixed
non-materialized literals (e.g. rule R4 of Example 1) while the fourth category
contains the rules where the number of literals depend on the actual input. These
are the ones that use elements of the RDF lists.

These rules are the most challenging to evaluate since they also require joins
between two or more generic sets of triples that can reside both on main memory
and disk. These joins are performed by first collecting all triples that instantiate
the first generic literal in main memory, and then passing all acceptable values
to the following generic literal using a sideways-information passing strategy [2].
This process is repeated until all generic patterns are processed. At this point a
final projection is used to construct the triples that instantiate the rule’s head.
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3.2 RDF-SQ: Main Intuition

The system receives in input a collection of triples that constitute the input
database, a set of rules, and a SPARQL BGP query. As a first operation, the sys-
tem performs the pre-materialization and rewrites the initial rules as described
in [21]. Then, each triple pattern in the SPARQL BGP query is retrieved in a
sequence, and the bindings of each variable are passed to the following pattern
using sideways information passing. After the bindings are retrieved, they are
joined using an in-memory hash join.

The RDF-SQ algorithm is invoked to retrieve all triples that instantiate each
triple pattern. Therefore, we can abstract the inference as a process that takes as
input a query that equals to a single literal and rewrites it in multiple subqueries
evaluating the rules to produce the derivations.

During this evaluation, a key difference between the categories of rules is
that rules in the third and fourth categories need to collect all the results of
their subqueries before they can proceed with the rest of the evaluation. If these
subqueries trigger further inference, then the rule evaluator must wait until the
subqueries are finished. In case the rules are evaluated by different threads, the
evaluator must introduce a synchronization barrier to ensure that all subqueries
have terminated. In contrast, rules in the first category can be executed inde-
pendently since their input is already available in main memory, and rules in the
second category do not need to wait because they can produce the derivation
immediately after they receive one triple. Therefore, the evaluation of the first
two categories of rules can be parallelized rather easily, while in the third and
fourth categories the synchronization barriers reduce the parallelism.

In RDF-SQ we leverage this distinction and only execute rules of the first
two categories in parallel. These rules are executed first, so that we can collect as
much derivation as possible before we start to apply the other two rule categories,
which require more computation.

3.3 RDF-SQ: Pseudocode

We report the pseudocode of RDF-SQ in Algorithm 1. To perform the parallel
evaluation of the rules in the first two categories, we use the parallel version of
QSQ presented in [21], which we call ParQSQ from now on. In our pseudocode,
this algorithm is represented by the function ParQSQ infer and it corresponds
to the function “infer” in Algorithm 1 of [21]. For the purpose of this paper, we
can see ParQSQ infer as a top-down algorithm that receives in input a query
Q and a list of queries already requested (called SubQueries in our code) and
returns a number of triples that instantiate Q using the ruleset P and I∪Mat as
input (notice that these variables are marked as global). Internally, this function
produces the same computation as in its original version, with the only differ-
ence that in the original code SubQueries is a local variable, while in our version
it is a global synchronized variable, so that every time a new member is added
through union (e.g. in line 23), the addition is permanent. This change is neces-
sary to implement our intended behavior of expanding each query only once, like
QSQ-R.
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Algorithm 1. RDF-SQ Main Algorithm. Q is the input query, I is a finite
set of facts, and R is the ruleset. The function returns the set of all facts that
instantiate Q. I, P,R, Tmp,Mat are global variables.

1 function rdf-sq(Q, R,I)
2 P := R12 := {r ∈ R : r.type = 1 ∨ r.type = 2}
3 R34 := {r ∈ R : r.type = 3 ∨ r.type = 4}
4 Mat, Tmp, New := ∅
5 do
6 SubQueries := ∅
7 Mat := Tmp ∪ New ∪ Mat
8 New := New ∪ ParQSQ infer(Q, SubQueries)
9 Mat := Mat ∪ Tmp

10 for(∀SQ ∈ SubQueries ∪ {Q})
11 if SQ was already processed in this loop
12 if all queries in SQ are processed
13 goto line 32
14 else
15 continue
16 else
17 mark SQ as processed
18 all subst := {θε}
19 for ∀r ∈ R34 s.t. SQ is unifiable with r.HEAD
20 θh := MGU(SQ, r.HEAD)
21 subst := {θε}
22 for ∀p ∈ r.BODY
23 tuples := ParQSQ infer(θh(p), SubQueries ∪ {Q})
24 Tmp := Tmp ∪ tuples
25 subst := subst �� lookup(θh(p), tuples)
26 end for
27 all subst := all subst ∪ (subst ◦ θh)
28 end for
29 if SQ = Q then New := New ∪⋃θ∈all subst{θ(SQ)}
30 else Tmp := Tmp ∪⋃θ∈all subst{θ(SQ)}
31 end for
32 while New ∪ Tmp ⊆ Mat ∪ I
33 return New
34 end function

We divide the functioning of RDF-SQ in three steps. First, the rules are
divided in two different ruleset categories (lines 2,3). The first ruleset is assigned
to P so that it is visible to ParQSQ. Second, the algorithm applies the rules
in the first two categories (line 8), and all the derivation produced is collected
in Mat. Third, the rules of third and fourth types are applied sequentially on
each (sub)subquery produced so far (lines 10–31), and ParQSQ infer is invoked
on each subquery that might be requested by these rules. Notice that the inner
invocation of ParQSQ infer might increase the size of SubQueries. Therefore,
in order not to enter in a infinite loop we mark each subquery as “processed”
and exit after all queries have been processed by all rules. The overall process
must be repeated until no rule has derived any new triple (line 32). Finally, the
program returns all explicit and inferred triples that instantiate the query Q.

3.4 RDF-SQ: Termination, Soundness, Completeness

In this paper, we limit to discuss these properties only informally since formal
proofs are lengthy and can be easily obtained with slight modifications of the
proofs presented in [21] for the algorithm ParQSQ.
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Termination. In general, every Datalog program is guaranteed to terminate
because no new symbol is being introduced [2]. Our algorithm is not an excep-
tion: Both the lookup and ParQSQ functions were proven to terminate [21], and
the two loops in the program will eventually terminate because there is always a
maximum numbers of facts and queries that we can construct from the domain
of a given input database.

Soundness. Soundness is a property that holds if every fact returned by
rdf-sq(Q,R, I) is contained in Tω

R(I) and instantiates Q. In our case, this
property can be verified rather easily since the derivations can be generated
either by ParQSQ infer or by the retrieval and union of all substitutions in lines
23 and 29. These two operations are equivalent to the operations performed by
ParQSQ infer to produce the conclusions. Hence they are sound due to the proof
in [21].

Completeness. Completeness requires that every fact that is in Tω
R(I) and instan-

tiates Q is returned by rdf-sq(Q,R, I). Completeness is a property that has
“cursed” QSQ algorithms since their inception. In fact, the original version of
QSQ-R presented in [23] was found to be incomplete and was fixed by the same
author and others in following publications [13,24]. Despite these fixes, later
implementations of QSQ presented in [10,22] and also the widely cited version
in [2] are still incomplete. A good explanation for the source of this incom-
pleteness is reported in [11]: Basically, the mistake is in relying on the intuitive
assumption that if we re-evaluate a query until fix-point during the recursive
process then we eventually retrieve all answers. Unfortunately, there are cases
where answers derived in previous steps cannot be exploited by the current sub-
query because the query is subsumed by a previous subquery, and hence not
further expanded.

One solution to fix this problem is to clear the cache of precomputed sub-
queries either at every recursive call or only on the main loop. In our pseudocode,
this operation is performed in line 6 of Algorithm 1. This guarantees that in every
iteration all intermediate derivations are used in every rule evaluation, and in
every iteration all unique subqueries are fully expanded by every rule at least
once. Therefore, our algorithm is complete because the main loop in lines 5–32
will not exit until no more derivation has been produced.

4 Evaluation

To evaluate our contribution, we compared the performance of RDF-SQ against
ParQSQ and QSQ-R. We chose the first because it has shown the best scalabil-
ity [21], and the second because it is the most popular QSQ algorithm. To this
end, we implemented both RDF-SQ and QSQ-R algorithms inside the QueryPIE
prototype, which contains the original implementation of ParQSQ.

QueryPIE is an on-disk RDF query engine written in Java, which is freely
available1. It is written on top of Ajira [20] – a general-purpose parallel frame-
1 https://github.com/jrbn/querypie.

https://github.com/jrbn/querypie
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Table 1. Response time of the LUBM queries on 10B triples. The numbers in bold
represent the best results.

Q Response time (ms. or seconds if with ’s’) Results (#)

ParQSQ QSQ-R RDF-SQ

C W C W C W

1 759 11 637 14 763 11 4

3 1.6 s 15 1.8 s 41 2.4 s 15 6

4 4.4 s 93 5.1s 330 6.6 s 55 34

5 9.3 s 251 9.8 s 658 11.0 s 82 719

7 3.5 s 67 4.1 s 236 2.1 s 51 4

8 165.8 s 3.0 s 176.0 5.3 s 171.8 s 821 7790

10 1.2 s 56 1.2 s 128 1.1 s 44 4

11 9.4 s 27 9.4 s 35 9.5 s 29 224

12 26.0 s 466 26.7 s 1.2 s 25.4 s 238 15

13 - - 4636.8 s 549.9 s 4062.3 s 50.3 s 37118

work for data intensive applications that gives the possibility of splitting com-
putation into concurrent tasks called chains. We set up Ajira so that it could
launch at most 8 concurrent tasks.

Testbed. We used a machine equipped with a dual quad-core CPU of 2.4 GHz,
24 GB of main memory and an internal storage of two disks of 1 TB in RAID-0.
We chose to launch our experiments using the LUBM benchmark for several
reasons: (i) LUBM is the de facto standard for measuring the performance of
OWL reasoners over very large RDF datasets; (ii) it was recently used to eval-
uate the performance of state-of-the-art OWL reasoners (e.g. [12,18]); (iii) it
supports challenging inference that uses rules in all four categories, and contains
a representative set of queries that encode different workloads.

To allow a fair comparison between the approaches, we activated the same
subset of rules and pre-materialized queries that were used in [21]. The excluded
rules are mainly redundant or used to derive a contradiction (these rules cannot
be activated during SPARQL answering). The only notable exclusions are the
rules that handle the owl:sameAs semantics. However, since LUBM does not
support this inference, these exclusions does not impact the performance of our
implementation.

Query Response Time. We loaded an input dataset that consists of a bit more
than 10 billion RDF triples (LUBM(80000)), and launched the LUBM queries
with the inference performed by the three top-down algorithms. We report in
Table 1 the cold and warm runtimes, and the number of results of each query.
Unfortunately not all queries succeeded because QueryPIE requires that all inter-
mediate results must fit in main memory, and this precludes the execution of
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queries 2, 6, 9, and 14. Also, query 13 failed for ParQSQ: it ran out of memory
after about 4 h.

We measured the runtime from the moment that the query is launched to the
time where all the data is collected and ready to be returned. The cold runtime
reports the runtime after the system is started. The warm runtime consists of
the average of the 29 consecutive runs of the same query. These last runs are
performed where all the data is in memory and no disk access is performed.

The results presented in the table give some interesting insights. First of all,
we notice that the difference between cold and warm reasoning reaches two orders
of magnitude. This shows that I/O has a significant impact on the performance.

Second, we notice that RDF-SQ produced the shortest warm runtime in
all but one case. To better understand the behaviour, we collected additional
statistics during these executions and report them in Table 2. In this table, we
report the maximum amount of bytes read from disk, the number of concurrent
Ajira chains produced during the execution, and the number of queries requested
to the knowledge base.

We chose to record these statistics because the amount of bytes read from
disk gives an indication of the I/O cost required for answering the query, while
the number of Ajira tasks and queries give a rough indication of the amount
of reasoning that was triggered. For example, query 1 is highly selective and
triggers no reasoning: In fact, only 21 megabytes are read from disk and the
number of both chains and queries is small. The most I/O intensive is query 13,
where about 200GB are read from disk.

Looking at the results reported in the two tables, we can draw some further
conclusions. First of all, the cold runtime is clearly limited by the I/O speed. All
three algorithms read about the same amount of data, except for query 13 where
ParQSQ fails. Second, considering the number of chains and queries produced,
we notice how ParQSQ is generally inefficient while QSQ-R positions itself as the
second most efficient algorithm. However, even though ParQSQ is less efficient
than QSQ-R, its runtimes are still competitive since the warm runtime is faster
than QSQ-R in almost all cases. This is due to its ability to parallelize the
computation.

Performance Breakdown. It is remarkable that RDF-SQ produced the smallest
number of subqueries and Ajira tasks in all cases. This highlights the efficiency
of RDF-SQ when compared with the other two methods. We further investigated
the reasons behind this difference and found that it is due to several factors:

– The impact of parallelism on the warm runtime is limited, since most of the
execution time is taken by rules of the third and fourth category. However,
parallelism brings a substantial reduction of the cold runtime. For example,
the execution of query 13 on a smaller data set (LUBM(8000)) with a single
processing thread produces a cold runtime of about 323 s, while if we use two
threads the runtime lowers to 124 s. There is no significant difference if we
increase the number of threads since two threads are enough to saturate the
bandwidth.
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Table 2. Statistics for the tests of Table 1. PQ stands for ParQSQ, QR for QSQ-R,
while RQ abbreviates RDF-SQ.

Q. Max MB
from disk

# Tasks # Queries

PQ QR RQ PQ QR RQ

1 21 18 26 18 6 8 6

3 64 144 266 138 69 98 66

4 216 7086 3275 708 3220 1055 289

5 542 6686 2907 557 2958 990 274

7 473 4527 2635 659 2029 859 282

8 13,846 6467 2427 871 2844 798 370

10 126 4476 1529 610 2006 510 261

11 1,594 57 70 52 20 22 17

12 4,359 4999 3476 775 2257 1132 327

13 198,858 - 3112 555 - 1055 274

– Executing rules of third and fourth category in a sequential manner brings
substantial benefits because at every step we can fully exploit tabling and
reuse all previous derivations. This is also confirmed by the fact that QSQ-
R produces comparable results with ParQSQ despite it being a sequential
algorithm while the other is parallel.

5 Conclusions

Overall, our evaluation gives a first empirical evidence of how our strategy of
interleaving the execution between two stages, one parallel and one sequential,
is beneficial. Because of this, our algorithm produced response times that are
significantly lower than other state-of-the-art algorithms using an input with ten
billion triples, which can be seen as graphs with more than 10 billion edges.

In the future, we plan to do further experiments to test the performance on
larger queries and on datasets with higher expressivity. Furthermore, a promis-
ing research direction consists of developing techniques which can dynamically
estimate whether parallelism can bring some benefit. Finally, we plan to extend
inference to SPARQL queries that encode other types of graph patterns.

To conclude, our contribution shows that complex top-down OWL inference
can be applied successfully over very large collections of data. This pushes for-
ward current boundaries, and enables the enrichment of the results of queries
over RDF data on an unprecedented scale.
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