
On Web-scale Reasoning

Jacopo Urbani

ii

Copyright © 2013 by Jacopo Urbani

VRIJE UNIVERSITEIT

On Web-scale Reasoning

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen
op woensdag 9 januari 2013 om 11.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Jacopo Urbani

geboren te Arzignano, Italië

promotoren: prof.dr.ir. H.E. Bal
prof.dr. F.A.H. van Harmelen

“Time reveals the truth”

Seneca, 22 b.C.

Preface

After I completed my master, I had a constant feeling that my education was
still not complete. What I needed was some more time to “think”, to figure
out what was missing, and I thought that staying in academia for few more
years was a perfect way to find it out. Therefore, to me pursuing a PhD was
simply the right thing to do even though - I must admit - I did not know very
well what the next years would look like.

As the time was passing by, I began to understand more and more what
I was doing. I started to grasp the essence of the work that is being done in
the scientific community and I liked it more and more. I enjoyed very much to
participate in the research process, and by working next to the most brilliant
persons I have ever met I had the chance to experience how top-level research
is currently conducted in one of the best universities in Europe.

In the last years I have learned several things, but what I believe is the most
important one is that science is not only about finding some solutions (using
the scientific method) but also about sharing them. I personally see science as
a collaborative space (Wikipedia defines it as a “systematic enterprise”) where
people continuously exchange solutions to solve some common problems.

When I started my studies I had no idea on how to operate in such space. I
did not know how to do research or on how to communicate it to other people.
All of this was being taught to me either explicitly or by example. Therefore,
since science is not only about doing research, but also about people, now is
the time to express all my appreciation to everyone who helped me to learn
this.

First of all, my gratitude goes to my supervisors, Henri Bal and Frank van
Harmelen, who patiently guided and actively helped me in my research. Their
teaching does not relate only to scientific matters. Through their example,
they also showed me how anybody should do his job in the right way. I can
truly say that they are two role models for me.

More in particular, I really admired in Henri his kindness and patience. I
will always be grateful to him for being the one who really believed in me from
the first moment. Even though I did my master thesis on a very different topic
from the expertise of his group, he immediately offered me a job with a very
high degree of freedom. I could not have had a better supervisor.

I also admire several qualities of my cosupervisor Frank, but there is one
that stands above all, and it is his passion for science. With his enthusiasm,
and his hard-working attitude he managed to transmit me one of the most
important motivations that drive the work in academia: believing in what you
are doing. Thanks very much for it.

viii

Also, my sincere thanks to Spyros Kotoulas and Jason Maassen, who su-
pervised me on a daily basis. They have always provided a concrete advice
and help, and listened to my complaints on basically everything. I want to
particularly mention Spyros not only for his precious help at work, but also
for being a very nice friend outside the VU. Working with them was simply
great, and I hope that I will have again the chance to do it again in the future.

I would also like to express my gratitude to all the coauthors of my publi-
cations, and to all the members of my PhD committee. Each of them played
a significant role in shaping the content of this thesis, and because of this I
thank them for their work and support.

In the last years, my colleagues in both Henri and Frank’s groups have
supported me very much, also on matters that were not related to my PhD.
Ceriel Jacobs spent much time debugging and improving my code and endless
conversations with my roommates Roelof, Timo, Nick, Alessandro, and all
the others have certainly contributed to enlighten me on several issues in the
Dutch culture. They are responsible for making my staying at the VU a very
nice experience and I thank them very much for it.

Also, my apologies to all the users of the DAS-4 cluster are in order. Be-
cause of deadlines, I often abused the official policies and they patiently had
to wait for my jobs to be finished. I hope it won’t happen again.

Finally, outside my work I received a very important help from my own
family, who has not only financially supported me through my studies, but also
educated me for more than 28 years. Another big thanks goes to my wife’s
family, who has learned to endure my company and made the Netherlands my
current home. To all of you, simply thanks for everything you did.

Last but not least, my respectful token of gratitude goes to my lady, Els-
beth, who patiently supported me for all the weekends where I was stuck
working instead of going outside to enjoy the beautiful Dutch weather. Words
cannot express what I feel for her. Now it’s time for your PhD, baby :-).

One more thing. I mentioned that when I finished my master I felt that
something was still missing. There is a famous Socrates’ quote that says:

“The more I learn, the more I learn how little I know.”

Now that my academic education is over, I realized how painfully true this is.

Contents ix

Contents

1. Introduction 1

1.1. Scope of research . 3

1.2. Summary of chapters . 5

1.3. Collaborations . 7

I Reasoning before query time 9

2. Forward-chaining reasoning with MapReduce 11

2.1. The MapReduce programming model 12

2.1.1. A simple MapReduce example: term count 13

2.1.2. Characteristics of MapReduce 14

2.2. RDFS reasoning with MapReduce 14

2.2.1. Example rule execution with MapReduce 15

2.2.2. Problems of RDFS reasoning with MapReduce 17

2.2.3. Loading schema triples in memory 18

2.2.4. Data preprocessing to avoid duplicates 19

2.2.5. Ordering the application of the RDFS rules 20

2.3. OWL reasoning with MapReduce 23

2.3.1. Challenges with OWL reasoning with MapReduce . . . 24

x Contents

2.3.2. Limit duplicates when performing joins between instance
triples . 26

2.3.3. Build sameAs table to avoid exponential derivation . . . 28
2.3.4. Perform redundant joins to avoid load balancing problems 30

2.4. Evaluation . 31
2.4.1. Implementation . 32
2.4.2. Experimental parameters 32
2.4.3. Dataset and reasoning complexity 35
2.4.4. Scalability . 36
2.4.5. Platform . 39

2.5. Related work . 40
2.6. Conclusion . 41

3. Distributed RDF data compression 45
3.1. Dictionary Encoding . 46
3.2. MapReduce Data compression 48

3.2.1. Job 1: caching of popular terms 50
3.2.2. Job 2: deconstruct statements, and assign IDs to terms 51
3.2.3. Job 3: reconstruct statements 54
3.2.4. Storing the term IDs . 54

3.3. MapReduce data decompression 55
3.3.1. Job 2: join with dictionary table 56
3.3.2. Job 3: join with compressed input 56

3.4. Evaluation . 57
3.4.1. Runtime . 58
3.4.2. Performance of the popular-term cache 60
3.4.3. Scalability . 61

3.5. Related work . 64
3.6. Conclusions and Future Work 65

4. Querying RDF data with Pig 67
4.1. SPARQL with Pig: overview 69

4.1.1. Runtime query optimization 70
4.1.2. Pig-aware cost estimation 72
4.1.3. Dealing with Skew . 73

4.2. Evaluation . 77
4.2.1. Experiments . 78

4.3. Related Work . 83
4.4. Conclusions . 85

Contents xi

II Reasoning at query time 87

5. Hybrid-reasoning 89

5.1. Hybrid reasoning: Overview . 90

5.2. Hybrid Reasoning: Backward-chaining 92

5.2.1. Our approach . 95

5.2.2. Exploiting the precomputation for efficient execution. . 101

5.3. Hybrid Reasoning: Pre-Materialization 102

5.3.1. Pre-Materialization algorithm 102

5.3.2. Reasoning with Pre-Materialized Predicates 104

5.4. Hybrid reasoning for OWL RL 108

5.4.1. Detecting duplicate derivation in OWL RL 111

5.5. Evaluation . 113

5.5.1. Performance of the pre-materialization algorithm 113

5.5.2. Performance of the reasoning at query time 115

5.5.3. Discussion . 120

5.6. Related Work . 121

5.7. Conclusions . 122

6. Reasoning and SPARQL on a distributed architecture 125

6.1. System architecture . 126

6.2. Data Storage . 127

6.3. Rule Execution . 129

6.4. SPARQL queries . 135

6.5. Evaluation . 138

6.5.1. Performance . 139

6.5.2. Scalability . 141

6.5.3. Efficiency . 143

6.6. Related Work . 144

6.7. Future Work and Conclusions 146

III Discussion and conclusions 149

7. Conclusions: Towards a reasonable Web 151

7.1. 1st Law: Treat schema triples differently 153

7.2. 2nd Law: Data skew dominates the data distribution 154

7.3. 3rd Law: Certain problems only appear at a very large scale . . 156

7.4. Conclusions . 158

xii Contents

IV Appendices 161

A. MapReduce Reasoning algorithms 163
A.1. RDFS MapReduce algorithms 163
A.2. OWL MapReduce algorithms 167

B. SPARQL queries 173
B.1. Queries for Yahoo! use-case . 173
B.2. BSBM queries . 174
B.3. LUBM queries . 175

Bibliography 177

1

Chapter 1

Introduction

The Semantic Web [9] is an extension of the current World Wide Web, where
the semantics of information can be interpreted by machines. Information is
represented as a set of Resource Description Framework (RDF) statements [93],
where each statement is made of three different terms: a subject, a predicate,
and an object. An example statement is

<http://www.vu.nl> <rdf:type> <dbpedia:University>

This example states that the concept identified by the URI http://www.vu.nl
is of type dbpedia:University∗. The Semantic Web is made of billions of such
statements, which describe information on a very wide range of domains, from
biomedical information [51] to government information [19]. URIs are often
used to identify concepts to ensure unambiguity and to favor reuse in a dis-
tributed setting like the Web.

The RDF data model used in combination with ontology languages like
OWL [52] allows generic applications to infer information that is not explicitly
stated. For example, if we enrich our running example with the following
triple:

<http://www.vu.nl> <rdfs:subClassOf> <foo:Public_Institution>

∗Throughout this thesis we will often shorten URIs using prefixes for conciseness.

2 Introduction

then we could infer that the concept identified by the URI http://www.

vu.nl is also of type Public Institution, even though this information is
not explicitly stored.

This process, which is commonly referred to as reasoning, can be performed
for a variety of purposes, like detecting inconsistencies or classifying data. In
our case, we intend to use reasoning to enrich the results of queries by adding
implicit information to the answer-set of the query.

When reasoning is applied to a large collection of RDF data, we label it
as large-scale reasoning. When the input becomes even larger, so that its size
can be compared the entire size of the Semantic Web, then the “large-scale”
becomes “web-scale”.

Web-scale reasoning is a crucial problem in the Semantic Web. In fact, at
the beginning of 2009, the Semantic Web was estimated to contain about 4.4
billion triples†. One year later, the size of the Web had tripled to 13 billion
triples and the current trend indicates that this growth rate has not changed.

With such growth, reasoning on a web scale becomes increasingly chal-
lenging, due to the large volume of data involved and to the complexity of
the task. Most current reasoners are designed with a centralized architecture
where the execution is carried out by a single machine. When the input size
is on the order of billions of statements, the machine’s hardware becomes the
bottleneck. This is a limiting factor for performance and scalability.

A distributed approach to reasoning is potentially more scalable because
its performance can be improved by adding more computational nodes. How-
ever, it is significantly more difficult to implement because it requires develop-
ing protocols and algorithms to efficiently share both data and computation.
Therefore, the research question that we address in this thesis is:

How can we perform reasoning to enrich query results over a very
large amount of data (i.e. on a web-scale) using a parallel and
distributed system?

To this end, we will present a number of algorithms that implement reason-
ing (and some other related tasks) on a parallel and distributed architecture.
The results obtained in our evaluation show that a distributed approach is a
viable option. In fact, by using our algorithms we were able to implement com-
plex reasoning and querying on up to hundred billion triples, which accounts
for about three times the entire size of the Semantic Web.

†http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/

Statistics

http://www.vu.nl
http://www.vu.nl
http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics

1.1 Scope of research 3

Before presenting the main contribution of this thesis, in the next section
we will define the scope of our research by making some ground assumptions
and define more clearly our approach to solve our problem. After this, in
Section 1.2, we will provide the outline of this thesis, briefly describing the
content of each chapter to ease the understanding and navigation throughout
this document. Finally, in Section 1.3 we will report an acknowledgment to
external support that was given in conducting the research presented in this
thesis.

1.1 Scope of research

As we state in our research question, we intend to apply reasoning to enrich the
results of queries. Therefore, we exclude from our discussion other purposes
for reasoning like detecting inconsistencies in the input data.

In this context we identify two main subtasks: the task of reasoning in-
tended as the process to infer implicit information and the task of querying
intended as the process to retrieve and return query results to the user. De-
pending on the type of reasoning that is performed, these two tasks can be
either independent or strongly interlinked. While in this thesis we will mainly
focus on the task of reasoning rather than of querying, we cannot ignore this
last one because if the results of the reasoning cannot be used to enrich the
queries then the entire process becomes meaningless.

Reasoning can be applied using a variety of methods. In this thesis we will
focus only on reasoning that can be performed through the application of rules.
More in particular, we will consider only monotonic rule-based reasoning. The
motivation behind this choice lies on several considerations:

• in the Web, the data is distributed and it is difficult (or even impossible)
to retract existing facts;

• there are some standardized rule sets (RDFS, OWL Horst, OWL 2 RL)
that are widely used in the Semantic Web community.

We will consider two main approaches to perform rule-based reasoning:
The first consists of applying all the rules before query-time, in order to derive
all the implicit information. In this case rules are normally applied using a
bottom-up strategy (also referred as forward-chaining or materialization) and
then queries are answered using technologies developed in the field of data
management. The second consists of applying the rules directly at query time,
in order to limit the derivation to information that is related to the query.

4 Introduction

Typically, this method is associated with a top-down application of the rules
(also referred as backward-chaining).

Both approaches have advantages and disadvantages that make them suit-
able to different use cases. The main advantage of methods of the first type
is that once all the derivation is computed no more reasoning is needed. A
disadvantage is that such methods become inefficient if the user is interested
in only a small portion of the input and the entire derivation is not needed.

Methods that perform reasoning directly at query time have the advantage
that typically they do not require an expensive pre-computation and therefore
are more suitable to datasets that change frequently. However, the computa-
tion required to execute the rules at query-time often becomes too expensive
for interactive applications. Thus, it has until now been limited to either
small datasets (usually in the context of expressive DL reasoners) or weak
logics (RDFS inference).

In our context scalability is an important metric to evaluate our contri-
bution. In principle, scalability can be evaluated according to two different
criteria: computational scalability (i.e. the ability to perform more complex
tasks) and input scalability (i.e. the ability to process a larger input). While
it is essential that the reasoning process is scalable regarding both aspects,
in our work we privilege the second type by sacrificing as little reasoning as
necessary in order to handle a very large input.

Since scalability is very important in our context, in order to improve it
we investigate the possibility to parallelize this process and to distribute it
across several loosely coupled machines. Such an approach is potentially more
scalable than a traditional sequential algorithm because it can scale on two
dimensions: the hardware and the number of the machines. The downside
of such choice is that while it might be beneficial in terms of performance, it
introduces new challenges that must be properly addressed. These challenges
can be grouped into three main classes of problems:

• Large data transfers: Reasoning is a data intensive problem and if the
data is spread across many nodes, the communication can easily saturate
the network or the disk bandwidth. Therefore, data transfers should be
minimized;

• Load balancing: Load balancing is a very common problem in dis-
tributed environments. In the Semantic Web, it is even worse because
data has a high skew, with some statements and terms being used much
more frequently than others. Therefore, the nodes in which popular in-
formation is stored have to work much harder, creating a performance
bottleneck;

1.2 Summary of chapters 5

• Reasoning complexity: Reasoning can be performed using a logic
that has a worst-case complexity that can be exponential. The time
it eventually takes to perform a reasoning task depends on both the
considered logic and on the degree the input data exploits this logic. On
a large scale, we need to find the best trade-off between logic complexity
and performance, developing the best execution strategy for realistic
datasets.

The reasoning methods that will be proposed in the next chapters will
address these problems proposing some solutions that either solve or limit the
effect of them on the overall performance. Therefore, we will frequently refer
to these problems during the explanation to explain whether and how our
solutions address them.

1.2 Summary of chapters

This thesis consists of seven chapters that are largely based from a collection
of scientific papers that are either published or under submissions. In this
section, we will outline the overall structure of this thesis and provide a brief
description of each of these chapters pointing out which publications they are
based on.

In general, the content of this thesis can be divided in three main parts.
In the first part, we will focus on reasoning applied before query-time with
the purpose of deriving all the possible inference. We call this part Reasoning
before query time because we will apply the rules using a forward-chaining
method before the user can query the data. This part is composed of three
chapters:

• Chapter 2: We present a forward-chaining method that uses the MapRe-
duce programming model to perform a materialization of all the deriva-
tion and present an evaluation using the DAS-4 computer cluster. The
method presented in this chapter has won the third IEEE SCALE chal-
lenge [83] and it is extracted and adapted from the following publications:

Scalable Distributed Reasoning using MapReduce. J. Urbani,
S. Kotoulas, E. Oren, F. van Harmelen. In Proceedings of
ISWC 2009.

OWL reasoning with WebPIE: calculating the closure of 100
billion triples. J. Urbani, S. Kotoulas, J. Maassen, F. van
Harmelen, H. Bal. In Proceedings of ESWC 2010.

6 Introduction

WebPIE: A Web-scale parallel inference engine using MapRe-
duce. J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen,
H. Bal. In Journal of Web Semantics, 10(0):59-75, 2012.

• Chapter 3: We describe a technique to compress the original RDF data
using dictionary encoding in order to increase the performance of the rea-
soning. This compression technique is used in our reasoning algorithms
to reduce the storage cost and to increase the performance of reasoning.
The content of this chapter was previously published in the following
publications:

Massive Semantic Web data compression with MapReduce. J.
Urbani, J. Maassen, H. Bal. In Proceedings of the 1st MapRe-
duce workshop at HPDC 2010.

Scalable RDF data compression with MapReduce. J. Urbani,
J. Maassen, Niels Drost, Frank Seinstra, H. Bal. In Journal
of Concurrency and Computation: Practice and Experience.
John Wiley & Sons, Ltd. 2012.

• Chapter 4: We present a technique to execute SPARQL queries using
the Pig language. Also in this case we use the MapReduce programming
model to allow the execution of complex queries over a very large in-
put. Therefore, this technique can be used after reasoning as presented
in Chapter 2 to provide a complete environment where both reasoning
and querying are possible. The content of this chapter was previously
published in the following publication:

Robust Runtime Optimization and Skew-Resistant Execution
of Analytical SPARQL Queries on Pig. S. Kotoulas, J. Urbani,
P. Boncz, P. Mika. In Proceedings of IWSC 2012.

In the second part of this thesis we will focus on the problem of performing
reasoning at query-time, which is the second main approach that we consider.
To this purpose we developed a technique that performs a small precompu-
tation beforehand and applies the remaining at query-time using a top-down
technique (also called backward-chaining). Because of this, we titled this part
Reasoning at query time. This part is based on the work published in

QueryPIE: Backward reasoning for OWL Horst over very large
knowledge bases. J. Urbani, F. van Harmelen, S. Schlobach, H.
Bal. In Proceedings of ISWC 2011.

1.3 Collaborations 7

Since we report a much more detailed explanation of the content of this
paper, we divided the presentation into two chapters in order to ease the
presentation:

• Chapter 5: We describe the main idea of our technique and analyze
fundamental properties like its soundness and completeness using the
theory of deductive databases. The content of this chapter led to an
additional publication which is currently under submission at:

QueryPIE: Hybrid reasoning with the OWL RL rules. J. Ur-
bani, R. Piro, F. van Harmelen, H. Bal. Currently under sub-
mission at the Semantic Web Journal. 2012.

• Chapter 6: Here we focus on the implementation of this technique in
a distributed setting. We abstracted the execution of the rules accord-
ing to some characteristics and integrated their execution into a simple
SPARQL engine (This last feature is not described in our ISWC ’11
publication).

The third and last part consists of a single chapter which is Chapter 7.
In this chapter, we try to abstract the technical and low-level contribution
presented in the previous chapters into some generic considerations that are
behind the performance of our methods. This work aims to identify some key
principles that can be used as a guideline to implement scalable reasoning on
a distributed setting or as an advice for further research that addresses similar
challenges in a different context.

1.3 Collaborations

A large part of the content of this thesis is extracted from a series of scientific
publications that were written in collaboration with other researchers.

In this section we acknowledge their contribution that they have given to
this work. More in particular, we mention the contribution of Peter Boncz
and Peter Mika, who, next to providing for useful comments in the develop-
ment process, have also ran the experiments using Virtuoso and the Yahoo!
infrastructure. Also, we would like to acknowledge the major contribution that
Robert Piro gave in formalizing and proving the correctness of the algorithms
presented in Chapter 5. Finally, we would like to thank Ceriel Jacobs who has
performed all the experiments presented in Chapter 6.

8 Introduction

The work presented in this thesis was partially funded by the Dutch na-
tional research program COMMIT, and by the EU Project FP7-215535, The
Large Knowledge Collider (LarKC).

9

Part I

Reasoning before query
time

11

Chapter 2

Forward-chaining reasoning with MapReduce

In this chapter we will describe a MapReduce method to implement a forward-
chaining reasoner to materialize all possible derivations using the RDFS and
OWL pD∗ rules.

The choice of MapReduce as programming model is motivated by the fact
that MapReduce is designed to limit data exchange and alleviate load balanc-
ing problems by dynamically scheduling jobs on the available nodes. How-
ever, simply encoding the rules using MapReduce is not enough in terms of
performance, and research is necessary to come up with efficient distributed
algorithms.

There are several rulesets that apply reasoning with different levels of com-
plexity. In this chapter, we will first focus on the RDFS [33] semantics, which
has a ruleset with relatively low complexity. We propose three optimizations
to address a set of challenges: ordering the rules to avoid fixpoint iteration,
distributing the schema to improve load balancing and grouping the input
according to the possible output to avoid duplicate derivations.

Second, in order to find the best tradeoff between complexity and perfor-
mance, we extend our technique to deal with the more complex rules of the
OWL ter Horst fragment [78]. The reason to choose this fragment is that
semantics of RDFS is not expressive enough in some particular use cases [90]
and the OWL ter Horst fragment is a de facto standard for scalable OWL

12 Forward-chaining reasoning with MapReduce

reasoning.
This fragment poses some additional challenges: performing joins between

multiple instance triples and performing multiple joins per rule. We overcome
these challenges by introducing three novel techniques to deal with a set of
problematic rules, namely the ones concerning the owl:transitiveProperty,
owl:sameAs, owl:someValuesFrom, and owl:allValuesFrom triples.

To evaluate our methods, we have implemented a prototype called WebPIE
(Web-scale Parallel Inference Engine) using the Hadoop framework. We have
deployed WebPIE on a 64-node cluster as well as on the Amazon cloud in-
frastructure and we have performed experiments using both real-world and
synthetic benchmark data. The obtained results show that our approach can
scale to a very large size, outperforming all published approaches, both in
terms of throughput and input size. To the best of our knowledge it is the
only approach that demonstrates complex Semantic Web reasoning for an in-
put of 1011 triples.

This chapter is organized as follow: first, in Section 2.1, we give a brief
introduction to the MapReduce programming model. This introduction is
necessary to provide the reader with basic knowledge to understand the rest
of the chapter.

Next, in Section 2.2, we focus on RDFS reasoning and we present a series
of techniques to implement the RDFS ruleset using MapReduce. Next, in
Section 2.3 we extend these technique to support the OWL ter Horst fragment
(also referred as pD∗ fragment). In Section 2.4 we provide the evaluation of
WebPIE. Finally, the related work and the conclusions are reported in Sections
2.5 and 2.6 respectively.

The techniques are explained at a high level without going into the de-
tails of our MapReduce implementation. In Appendix A, we describe the
implementation of the WebPIE implementation at a lower level providing the
pseudocode of the most relevant reasoning algorithms.

2.1 The MapReduce programming model

MapReduce is a framework for parallel and distributed processing of batch
jobs [21]. Each job consists of two phases: a map and a reduce. The mapping
phase partitions the input data by associating each element with a key. The
reduce phase processes each partition independently. All data is processed
as a set of key/value pairs: the map function processes a key/value pair and
produces a set of new key/value pairs; the reduce merges all intermediate
values with the same key and outputs a new set of key/value pairs.

2.1 The MapReduce programming model 13

Algorithm 1 Counting term occurrences in RDF NTriples files

1 map(key, value):
2 // key: line number
3 // value: triple
4 emit(value.subject, blank); // emit a blank value, since
5 emit(value.predicate, blank); // only number of terms matters
6 emit(value.object, blank);
7
8 reduce(key, iterator values):
9 // key: triple term (URI or literal)

10 // values: list of irrelevant values for each term
11 int count=0;
12 for (value in values)
13 count++; // count number of values, equaling occurrences
14 emit(key, count);

A p C

A q B

D r D

E r D

F r C

Map

...

 Reduce<C,...>

Map

<A,...>
<p,...> ...<C

,..
.>

 Reduce
<F,...>

INPUT OUTPUT
<C,2>

<F,1><r,...>

C 2

p 1

r 3

q 1

D 3

F 1

...

Figure 2.1: MapReduce processing

2.1.1 A simple MapReduce example: term count

We illustrate the use of MapReduce through an example application that
counts the occurrences of each term in a collection of triples. As shown in
Algorithm 1, the map function partitions these triples based on each term.
Thus, it emits intermediate key/value pairs, using the triple terms (s,p,o) as
keys and blank, irrelevant, value. The framework will group all intermediate
pairs with the same key, and invoke the reduce function with the correspond-
ing list of values, summing the number of values into an aggregate term count
(one value was emitted for each term occurrence).

This job could be executed as shown in Figure 2.1. The input data is split
in several blocks. Each computation node operates on one or more blocks, and
performs the map function on that block. All intermediate values with the
same key are sent to one node, where the reduce is applied.

14 Forward-chaining reasoning with MapReduce

2.1.2 Characteristics of MapReduce

This simple example illustrates some important elements of the MapReduce
programming model:

• since the map operates on single pieces of data without dependencies,
partitions can be created arbitrarily and can be scheduled in parallel
across many nodes. In this example, the input triples can be split across
nodes arbitrarily, since the computations on these triples (emitting the
key/value pairs), are independent of each other.

• the reduce operates on an iterator of values because the set of values is
typically far too large to fit in memory. This means that the reducer can
only partially use correlations between these items while processing: it
receives them as a stream instead of a set. In this example, operating
on the stream is trivial, since the reducer simply increments the counter
for each item.

• the reduce operates on all pieces of data that share the same key. By
assigning proper keys to data items during the map, the data is par-
titioned for the reduce phase. A skewed partitioning (i.e. skewed key
distribution) will lead to imbalances in the load of the compute nodes.
If term x is relatively popular the node performing the reduce for term x
will be slower than others. To use MapReduce efficiently, we must find
balanced partitions of the data.

• Because the data resides on local nodes, and the physical location of data
is known, the platform performs locality-aware scheduling : if possible,
map and reduce are scheduled on the machine holding the relevant data,
moving computation instead of data.

2.2 RDFS reasoning with MapReduce

The closure under the RDFS semantics [33] can be computed by applying all
RDFS rules iteratively on the input until no new data is derived. Rules with
one antecedent can be applied with a single pass on the data. Rules with two
antecedents are more challenging to implement since they require a join over
two parts of the data: if the join is successful, we derive a consequence.

It is well known that the RDFS closure is infinite, and we will describe
how we ignore some of the RDFS rules which produce either trivial results or

2.2 RDFS reasoning with MapReduce 15

1: s p o (if o is a literal) ⇒ :n rdf:type rdfs:Literal
2: p rdfs:domain x, s p o ⇒ s rdf:type x
3: p rdfs:range x, s p o ⇒ o rdf:type x

4a: s p o ⇒ s rdf:type rdfs:Resource
4b: s p o ⇒ o rdf:type rdfs:Resource

5: p rdfs:subPropertyOf q, ⇒ p rdfs:subPropertyOf r
q rdfs:subPropertyOf r

6: p rdf:type rdf:Property ⇒ p rdfs:subPropertyOf p
7: s p o, p rdfs:subPropertyOf q ⇒ s q o
8: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf rdfs:Resource
9: s rdf:type x, x rdfs:subClassOf y ⇒ s rdf:type y

10: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf s
11: x rdfs:subClassOf y, ⇒ x rdfs:subClassOf z

y rdfs:subClassOf z
12: p rdf:type ⇒ p rdfs:subPropertyOf rdfs:member

rdfs:ContainerMembershipProperty
13: o rdf:type rdfs:Datatype ⇒ o rdfs:subClassOf rdfs:Literal

Table 2.1: RDFS rules (D)[33]

ignore derivations that are considered bad style. For similar reasons, we do
not add the RDFS axiomatic triples to the input data.

The rest of this section explains in detail how we can efficiently apply the
RDFS rules with MapReduce. First, in Section 2.2.1, we describe how to
implement an example rule in MapReduce in a straightforward way. Next, we
describe the problems that arise with such a straightforward implementation
and we discuss some optimizations that we introduce to solve, or at least
reduce, such problems.

2.2.1 Example rule execution with MapReduce

Applying one rule means performing a join over some terms in the input triples.
Let us consider rule 9 from Table 2.1, which derives rdf:type based on the
sub-class hierarchy. This rule contains a single join on variable x, and it can
be implemented with a map and reduce function, as shown in Figure 2.2 and
Algorithm 2.

In the map function, we process each triple and output a key/value pair, us-
ing as value the original triple, and as key the triple’s term (s,p,o) on which
the join should be performed. To perform the join, triples with rdf:type

should be grouped on their object (eg. “x”), while triples with rdfs:subClassOf

should be grouped on their subject (also “x”). When all emitted tuples are

16 Forward-chaining reasoning with MapReduce

Algorithm 2 Naive sub-class reasoning (RDFS rule 9)

1 map(key, value):
2 // key: linenumber (irrelevant)
3 // value: triple
4 switch triple.predicate
5 case "rdf:type":
6 emit(triple.object, triple); // group (s rdf:type x) on x
7 case "rdfs:subClassOf":
8 emit(triple.subject, triple); // group (x rdfs:subClassOf y) on x
9

10 reduce(key, iterator values):
11 // key: triple term, eg x
12 // values: triples, eg (s type x), (x subClassOf y)
13 superclasses=empty;
14 types=empty;
15
16 // we iterate over triples
17 // if we find subClass statement, we remember the super-classes
18 // if we find a type statement, we remember the type
19 for (triple in values):
20 switch triple.predicate
21 case "rdfs:subClassOf":
22 superclasses.add(triple.object) // store y
23 case "rdf:type":
24 types.add(triple.subject) // store s
25
26 for (s in types):
27 for (y in classes):
28 emit(null, triple(s, "rdf:type", y));

2.2 RDFS reasoning with MapReduce 17

a rdf:type C1

b rdf:type C1

a rdf:type C2

C1 rdfs:subClassOf: C3

 Reduce

<C1,”a rdf:type C1">

INPUT OUTPUT

Map

Map

Map

Map Reduce

a rdf:type C3

b rdf:type C3

<C1,”b rdf:type C1">

<C2,”a rdf:type C2">

<C1,”a rdfs:subClassOf C3">

{

Figure 2.2: Encoding RDFS rule 9 in MapReduce.

grouped for the reduce phase, these two will group on “x” and the reducer will
be able to perform the join.

One execution of these two functions will not find all corresponding con-
clusions because there could be some derived statements which trigger other
joins. For example, in order to compute the transitive closure of a chain of n
rdfs:subClassOf-inclusions, we would need to apply the above map/reduce
steps log2n times.

The algorithm we presented encodes only rule 9 of the RDFS rules. We
would need to add other, similar, algorithms to implement each of the other
rules. These other rules are interrelated: one rule can derive triples that
can serve as input for another rule. For example, rule 2 derives rdf:type

information from rdfs:domain statements. After applying that rule, we would
need to re-apply our earlier rule 9 to derive possible superclasses. Thus, to
produce the complete RDFS closure of the input data using this technique
we need to add more map/reduce functions and keep executing them until we
reach a fixpoint.

2.2.2 Problems of RDFS reasoning with MapReduce

The previously presented implementation is straightforward, but inefficient.
The problems are:

Derivation of duplicates. We encoded, as example, only rule 9 and we
launched a simulation over the Falcon dataset, which contains 35 million
triples. After 40 minutes the program had not yet terminated, but had
already generated more than 50 billion triples and filled our disk space.
Considering that the unique derived triples from Falcon are no more than
1 billion, the ratio of unique derived triples to duplicates is at least 1:50.
With such duplicates ratio, this implementation cannot scale to a large
size because the communication and storage layers will fail to store the

18 Forward-chaining reasoning with MapReduce

additional data.

Join with schema triples. If we execute the joins as described in the ex-
ample, there will be some groups which will be consistently larger than
others and the system will be unable to efficiently parallelize the com-
putation, since a group has to be processed by one single node.

Fixpoint iteration. In order to compute the closure, we need to keep ap-
plying the rules until we finish deriving new information. The number
of iterations depends on the complexity of the input. Nevertheless, we
can research whether a specific execution order leads to fewer iterations
than another.

In the next sections, we introduce three optimizations that address these
three problems to greatly decrease the time required for the computation of
the closure. These optimizations are: (i) limit the number of duplicates with
a pre-processing step; (ii) optimize the joins by loading the schema triples
in memory; (iii) minimize the number of iterations needed by ordering the
execution of rules according to their dependencies.

2.2.3 Loading schema triples in memory

When we perform the data joins required by the rule executions, we make
a distinction between schema and instance triples. With schema triples we
refer to those triples which have a RDFS or OWL term (except owl:sameAs)
as predicate or object and that are used in the rules bodies. For example,
(:A rdfs:subClassOf :B) is a schema triple while (:a rdf:type :B) is an
example of instance triple.

Typically, schema triples are by far less numerous than instance triples [35].
Consider the Billion Triple Challenge dataset, which is a dataset of data
crawled from the Web. This dataset was built to be a realistic representa-
tion of the Semantic Web and therefore can be used to infer statistics which
are representative for the entire web of data. The results, shown in Table 2.2,
confirm this assumption and allow us to exploit this fact to execute the joins
more efficiently.

Before we continue our explanation, we must note that all the RDFS rules
that require a join have at least one schema triple as antecedent. This means
that all the RDFS joins are either between two schema triples or between one
schema triple and one instance triple. We can exploit this fact to load all
schema triples in memory and perform the join with the input triples in a
streaming fashion.

2.2 RDFS reasoning with MapReduce 19

Schema type Number Fraction
domain, range (p rdfs:domain D, p rdfs:range R) 30.000 0.004%
sub-property (a rdfs:subPropertyOf b) 70.000 0.009%
sub-class (a rdfs:subClassOf b) 2.000.000 0.2%

Table 2.2: Schema triples (number and fraction of total triples) in the Billion
Triple Challenge dataset

As an illustration, let’s consider rule 9 of Table 2.1: The set of rdf:type

triples is typically far larger than the set of rdfs:subClassOf triples. Es-
sentially, what we do is to load the small set of rdfs:subClassOf triples in
memory and launch a MapReduce job that joins the many instance triples it
receives as input (the rdf:type triples) with the in-memory schema triples.
This methodology is different from the straightforward implementation where
we were grouping the antecedents during the map phase and performing the
join during the reduce phase (see the example in Section 2.2.1).

The advantages of performing a join against in-memory schema triples are:
(i) We do not need to repartition our data in order to perform the join, meaning
that we are reducing data transfers. (ii) For the same reason, the load balance
is perfect, since any node may process any triple from the input. (iii) we can
calculate the closure of the schema in-memory, avoiding the need to iterate
log2n times over our input, in practically all cases.

The main disadvantage of this method is that it works only if the schema
is small enough to fit in memory. We have shown that this holds for generic
web data but there might be some specific contexts in which this assumption
does not hold anymore.

2.2.4 Data preprocessing to avoid duplicates

The join with the schema triples can be executed either during the map phase
or during the reduce phase. If we execute it during the map phase, we can use
the reduce phase to filter out the duplicates.

Let us take, as an example, rule 2 (rdfs:domain) of the RDFS ruleset.
Assume we have an input with ten different triples that share the same sub-
ject and predicate but have a different object. If the predicate has a domain
associated with it and we execute the join in the mappers, the framework will
output a copy of the new triple for each of the ten triples in the input. These
triples can be correctly filtered out by the reducer, but they will cause signif-
icant overhead because they will need to be stored locally and be transferred

20 Forward-chaining reasoning with MapReduce

over the network.

After initial experiments, we have concluded that the number of duplicates
generated during the map phase was too high and it was affecting the overall
performance. Therefore, we decided to move the execution of the join to the
reduce phase and use the map phase to preprocess the triples.

To see how it works, let us go back to rule 2. Here, we can avoid the
generation of duplicates if we first group the triples by subject and then ex-
ecute the join over the single group. Grouping triples by value means that
all derivations involving a given s will be made at the same reducer, making
duplicate elimination trivial.

This methodology can be generalized for other joins by setting the parts
of the input triples that are also used in the derived triple as the intermediate
key and the part that should be matched against the schema as value. These
parts depend on the applied rule. In the example above, the only part of the
input that is also used in the output is the subject while the predicate is used
as matching point. Therefore, we will set the subject as key and the predicate
as value. Since the subject appears also in the derived triple, it is impossible
that two different groups generate the same derived triple. Eventual duplicates
that are generated within the group can be filtered out by the reduce function
with the result that no duplicates can be generated.

This process does not avoid all duplicate derivations because we can still
derive duplicates against the original input. Looking back at rule 2, when the
reduce function derives that the triple’s subject is an instance of the predicate’s
domain, it does not know whether this information was already explicit in the
input. Therefore, we still need to filter out the derivation, but only against
the input and not between the derivations from different nodes.

2.2.5 Ordering the application of the RDFS rules

We have analyzed the RDFS ruleset to understand which rule may be triggered
by which other rule. By ordering the execution of rules according to their
data dependencies, we can limit the number of iterations needed to reach full
closure.

Rules 1, 4, 6, 8, 10 are ignored without loss of generality. These rules have
one antecedent and can be implemented at any point in time with a single
pass over the data and the outcome they produce cannot be used for further
non-trivial derivation.

Also rules 12 and 13 have a single antecedent and therefore can be imple-
mented with a single pass over the input. However, their outcome can be used

2.2 RDFS reasoning with MapReduce 21

Rule 13
(type Datatype)

Rule 9
(subclass inheritance)

Rule 2
(property domain)

Rule 7
(subprop. inheritance)

Rule 5
(subprop. transitivity)

Rule 11
(subclass. transitivity)

Rule 3
(property range)

Rule 12
(type

ContainerMember)

JOB 1

JOB 2

JOB 4

Figure 2.3: Relation between the various RDFS rules. The red cross indicates
the relations that we do not consider.

22 Forward-chaining reasoning with MapReduce

for further non-trivial derivation and therefore we must include them in our
discussion.

First, we have categorized the rules based on their output:

• rules 5 and 12 produce schema triples with rdfs:subPropertyOf as pred-
icate;

• rules 11 and 13 produce schema triples with rdfs:subClassOf as predicate;

• rules 2, 3,and 9 produce instance triples with rdf:type as predicate;

• rule 7 may produce arbitrary triples.

We also have categorized the rules based on the predicates in their an-
tecedents:

• rules 5 and 11 operate only on triples which have either rdfs:subClassOf
or rdfs:subPropertyOf in the predicate position;

• rules 9, 12 and 13 operate on triples with rdf:type, rdfs:subClassOf or
rdfs:subPropertyOf in the predicate position;

• rule 2, 3 and 7 can operate on arbitrary triples.

Figure 2.3 displays the relation between the RDFS rules based on their
input and output (antecedents and consequents). Arrows signify data de-
pendencies. An ideal execution should proceed bottom up: first apply the
sub-property rules (rule 5 and 7), then rules 2 and 3, and finally rules 9, 11,
12 and 13.

Rules 12 and 13 can produce triples that serve the rules at the lower levels.
However, looking carefully, we see that these connections are possible only in
few cases: The output of rule 12 can be used to fire rules 5 and 7. In order
to activate rule 5, there must be either a superproperty of rdfs:member or
a subproperty of p. In order to activate rule 7 there must be some resources
connected by p. We ignore the first case of rule 5, following the advice against
“ontology hijacking” from [35] that suggests that users may not redefine the
semantics of standard RDFS constructs. The other two cases are legitimate
but we have noticed that, in our experiments, they never appear.

The same discussion applies to rule 13 which can potentially fire rules 9
and 11. Again, we have noticed that the legitimate cases when this happens
are very rare.

The only possible loop we can encounter is when we extend the schema by
introducing subproperties of rdfs:subproperty. In this case rule 7 could fire

2.3 OWL reasoning with MapReduce 23

rule 5, generating a loop. Although not disallowed, we have never encountered
such case in our experiments.

Given these considerations, we can conclude that there is an efficient rule
ordering which consistently reduces the number of times we need to apply the
rules. The cases where we might have to reapply the rules either do not require
expensive computation (for rules 12 and 13 an additional single pass over the
data is enough) or occur very rarely or not at all.

Therefore, as our third optimization, we apply the rules as suggested in
Figure 2.3, and launch an additional single-pass job to derive the possible
derivation triggered by rules 12 and 13. Please notice that in this way we are
performing incomplete RDFS reasoning since we intentionally exclude some
cases that could potentially appear in the input and could lead to some ad-
ditional derivation. The reason because we exclude some cases is that they
would either produce undesirable inference (see the advice against “ontology
hijacking”) or that they occur only very rarely (or even not all) and they do
not seem to be a real issue on real world datasets.

Nevertheless, if completeness is paramount, then it is cheap to verify after
the rule execution whether one of these cases occur in the input or derivation.
If these cases indeed occur, then a single application of the rules is not enough
and we must repeat their execution until all the derivation is computed.

2.3 OWL reasoning with MapReduce

In the previous section, we have described how to perform efficient reasoning
under the RDFS semantics. Here, we move to the more complex OWL se-
mantics considering the ruleset of the ter Horst fragment [78]. The reasons of
choosing this fragment are: (i) it is a de facto standard for scalable OWL rea-
soning, implemented by industrial strength triple stores such as OWLIM; (ii)
it can be expressed by a set of rules; and (iii) it strikes a balance between the
computationally infeasible OWL full and the limited expressiveness of RDFS.
The OWL Horst ruleset consists of the RDFS rules [33], shown in Table 2.1
and the rules shown in Table 2.3.

As with the RDFS ruleset, we omit some rules with one antecedent (rules
5a, 5b). These rules can be parallelized efficiently and are commonly ignored
by reasoners since they yield consequences that can be easily calculated at
query-time. The other rules introduce new challenges.

In the remaining of this section we will describe these additional challenges
and we will propose a new set of optimizations to address them. Again, we
will defer thorough explanation of the algorithms to Appendix A.2.

24 Forward-chaining reasoning with MapReduce

1: p rdf:type owl:FunctionalProperty, ⇒ v owl:sameAs w
u p v , u p w

2: p rdf:type owl:InverseFunctionalProperty, ⇒ v owl:sameAs w
v p u, w p u

3: p rdf:type owl:SymmetricProperty, v p u ⇒ u p v
4: p rdf:type owl:TransitiveProperty, ⇒ u p v

u p w, w p v
5a: u p v ⇒ u owl:sameAs u
5b: u p v ⇒ v owl:sameAs v

6: v owl:sameAs w ⇒ w owl:sameAs v
7: v owl:sameAs w, w owl:sameAs u ⇒ v owl:sameAs u

8a: p owl:inverseOf q, v p w ⇒ w q v
8b: p owl:inverseOf q, v q w ⇒ w p v

9: v rdf:type owl:Class, v owl:sameAs w ⇒ v rdfs:subClassOf w
10: p rdf:type owl:Property, p owl:sameAs q ⇒ p rdfs:subPropertyOf q
11: u p v, u owl:sameAs x, v owl:sameAs y ⇒ x p y

12a: v owl:equivalentClass w ⇒ v rdfs:subClassOf w
12b: v owl:equivalentClass w ⇒ w rdfs:subClassOf v
12c: v rdfs:subClassOf w, w rdfs:subClassOf v ⇒ v rdfs:equivalentClass w
13a: v owl:equivalentProperty w ⇒ v rdfs:subPropertyOf w
13b: v owl:equivalentProperty w ⇒ w rdfs:subPropertyOf v
13c: v rdfs:subPropertyOf w, ⇒ v rdfs:equivalentProperty w

w rdfs:subPropertyOf v
14a: v owl:hasValue w, v owl:onProperty p, u p w ⇒ u rdf:type v
14b: v owl:hasValue w, v owl:onProperty p, ⇒ u p w

u rdf:type v
15: v owl:someValuesFrom w, ⇒ u rdf:type v

v owl:onProperty p, u p x, x rdf:type w
16: v owl:allValuesFrom u, v owl:onProperty p, ⇒ x rdf:type u

w rdf:type v, w p x

Table 2.3: OWL Horst rules

2.3.1 Challenges with OWL reasoning with MapReduce

Some of the rules in Table 2.3 can be efficiently implemented using the opti-
mizations presented for the RDFS fragment. These are rules 3, 8a, 8b, 12a,
12b, 12c, 13a, 13b, 13c, 14a, 14b.

The rest of the rules introduce new challenges:

Joins between multiple instance triples In RDFS, at most one antecedent
can be matched by instance triples. In this fragment, rules 1, 2, 4, 7,
11, 15 and 16 contain two antecedents that can be matched by instance
triples. Thus, loading one side of the join in memory (the schema triples)
and processing instance triples in a streaming fashion no longer works
because instance triples greatly outnumber schema triples and the main

2.3 OWL reasoning with MapReduce 25

memory of a compute node is not large enough to load the instance
triples;

Exponential number of derivations This problem is evident with the sameAs
derivations and we illustrate it with a small example. Consider that we
have one resource which is used in n triples. When we add one synonym
of this resource (which is also used in n triples), rule 11 would derive
21 ·n triples. If there are 3 synonyms, the reasoner will derive 23 ·n new
resources and for l synonyms, it would derive 2l · n. The I/O system
can not sustain this exponential data growth, and soon enough, it would
become a performance bottleneck;

Multiple joins per rule In RDFS, all the rules require at most one join
between two antecedents. Here, rules 11, 15 and 16 require two joins. For
example, rule 11 requires a join between (u p v) and (u owl:sameAs

x) on (u) and a join between (u p v) and (v owl:sameAs y) on (v);

Fixpoint iteration This problem was also present in the RDFS ruleset, but
there, by making some assumptions, we could identify an execution order
with no loops. This is not the case of OWL and we are required to iterate
until fixpoint.

We propose three new optimizations that focus on the first three problems:
(i) We limit the number of duplicates exploiting the characteristics of the
rules. (ii) We build a synonyms table to avoid the materialization of the
sameAs derivations. (iii) We execute part of the joins in memory when we
have to perform multiple joins. In previous work [86] we ran some experiments
changing the rule execution order to verify whether we could reduce the number
of MapReduce jobs and therefore to improve the fourth problem of not having
a fixpoint iteration. However, from our results we could not identify an optimal
rule execution strategy that works in general and therefore in this chapter we
will always consider a fixed rule execution order. Further investigations on
this issue should be seen as future work.

In the remaining of this section we describe each optimization in more
detail. These optimizations cannot be generically applied to any rule as it was
the case with the RDFS fragment, but instead are tailored to the characteristics
of individual rules or groups of rules in the ter Horst fragment.

26 Forward-chaining reasoning with MapReduce

2.3.2 Limit duplicates when performing joins between in-
stance triples

In MapReduce, a join between instance triples can be performed only in the
reduce phase, as shown in the example in Section 2.2.1. This execution can
potentially lead to load balancing problems and exponential derivation of du-
plicates. In this section, we propose a series of techniques to avoid (or limit)
the number of duplicate derivations.

The rules which require joins between instance triples are rules 1, 2, 4,

7, 11, 15 and 16. We will defer discussion on the last four rules to Sec-
tions 2.3.3 and 2.3.4.

Rules 1 and 2 require a join between any two triples; however, if we look
more carefully, we notice that the joins are on two resources, not on one, and
the generic triples are filtered using information in the schema. In rule 1, the
join is on the subject and predicate, while in rule 2 it is on the predicate and
the object. Because we group on two resources, it is very unlikely that the
reduce groups will be big enough to cause load balancing problems.

Rule 4 requires a three-way join between one schema triple and two instance
triples. For readability we repeat the rule below:

if p rdf:type owl:TransitiveProperty

and u p w

and w p v

then u p v

At first sight, rule 4 seems similar to rules 1 and 2, suggesting that it
can be implemented by partitioning triples according to (pw) (i.e. partition
triples according to subject-predicate and predicate-object) and performing
the join in-memory, together with the schema triple. However, there is a
critical difference with rules 1 and 2: the descendant is likely to be used as
an antecedent (i.e. we have chains of resources connected through a transitive
relationship). Thus, this rule must be applied iteratively.

Applying rule 4 in a straightforward way will lead to a large number of
duplicates, because every time the rule is applied, the same relationships will
be inferred. For a transitive property chain of length n, a straightforward
implementation will generate O(n3) copies while the maximum output only
contains O(n2) unique pairs.

We can solve this problem if we constrain how triples are allowed to be
combined. For example, consider the following three triples: (a p b), (b p

c) and (c p d) where a, b, and c are generic resources and p is a transitive
property. Figure 2.4 graphically represents the corresponding RDF graph.

2.3 OWL reasoning with MapReduce 27

a b c dp pp

distance=1 distance=2 distance=3

Figure 2.4: OWL transitive closure

Applying rule 4 consists of calculating the transitive closure of such chain; i.e.
explicitly connect a with c and d and connect b with d.

With one MapReduce job we are able to perform a join only between triples
with a shared resource. Therefore, we need logn MapReduce jobs to compute
the transitive closure of a chain of length n.

We define the distance between two subsequent resources in a transitive
chain as the number of hops necessary to reach the second from the first one.
In our example the terms a and b have distance one while the terms a and c

have distance two because they are connected through b. When we execute
the nth MapReduce job we would like not to derive triples which have a graph
distance less than or equal to 2n−2 because these were already derived in the
previous execution. We also would like to derive the new triples only once and
not by different combinations. The conditions to assure this are:

• on the left side of the join (triples which have the key as object) we allow
only triples with distance 2n−1 and distance 2n−2;

• on the right side of the join (triples which have the key as subject) we
allow only triples with the distance greater than 2n−2.

In the ideal case, we completely avoid duplicates. Nevertheless, when there
are different chains that intersect, the algorithm will still produce duplicate
derivations, but much fewer than without this optimization. This algorithm
is described in pseudocode in Appendix A.2, Algorithm 23.

28 Forward-chaining reasoning with MapReduce

2.3.3 Build sameAs table to avoid exponential derivation

Rule 7 Rule 11

if v owl:sameAs w if u p v

and w owl:sameAs u and u owl:sameAs x

then v owl:sameAs u and v owl:sameAs y

then x p y

To avoid exponential derivation, we do not directly materialize inferences
based on owl:sameAs triples. Instead, we construct a table of all sets of
resources connected by owl:sameAs relationships (rules 6, 7, 9, 10 and 11
from Table 2.3) and we always refer to the id of the sets. In other words, we
choose a nominal representation for equivalent resources under owl:sameAs.
This is common practice in industrial strength triple stores, and dealing with
such a structure is much more efficient at query time. Note that this does
not change the computational complexity of the task, since the owl:sameAs

relationships are still calculated. The sameAs table simply provides a more
compact representation, reducing the number of intermediate data that need
to be processed and the size of the output.

This process makes rules 6, 9, 10 redundant, since the results of their
application will be merged using the synonyms table.

Nevertheless, we still need to apply the logic of rule 7 and rule 11 (which
are reported at the beginning of this section).

Both rules are problematic because they involve a two-way and a three-way
join between instance triples. As before, and because the join is on instance
data, we cannot load one side in memory. Instead we are obliged to perform
the join by partitioning the input on the part of the antecedents involved in
the join.

Again, such an approach would cause severe load balancing problems. For
example, rule 11 involves joins on the subject or the object of an antecedent
with no bound variables. As a result, the data will need to be partitioned on
subject or object, which follow a very uneven distribution. This will obviously
lead to serious load balancing issues because a single machine will be called to
process a large portion of the triples in the system (e.g. consider the number
of triples with foaf:person as object).

To avoid these issues, we first apply the logic of rule 7 to find all the
groups of synonyms that are present in the datasets (i.e. resources connected
by the owl:sameAs relation) and we assign a unique key to each of these
groups. In other words, we calculate all non-singleton equivalence classes under

2.3 OWL reasoning with MapReduce 29

owl:sameAs. We store the pairs (resource, group key) in a table that we
call the sameAs table. Subsequently, we replace in our input all the occurrences
of the resources in the sameAs table with their corresponding group key. In
other words, we apply the same logic of rule 11, building a new dataset where
we only refer to the single canonical representation for each equivalence class.

We will now describe how we can build the sameAs table and replace all
items by their canonical representation using MapReduce.

Building the sameAs table

Our purpose is to group the resources connected with the sameAs relationship
and assign a unique ID to each group.

For example, suppose that we have four triples: (a sameAs b), (b sameAs

c), (c sameAs d) and (x sameAs y). These triples can be grouped in two
groups: one containing a,b,c and the other containing x and y. We would
like to assign a unique ID to each group and store this information in a table
so that later on we can replace every instance of the resources (a, b, etc.) with
the corresponding group ID.

Since the owl:sameAs relation is symmetric, the corresponding RDF graph
of the sameAs triples is undirected ((a sameAs b) implies (b sameAs a)).
What we do is to assign a unique ID to each resource and turn the undirected
graph into a directed one by making the edges point to the node with higher
ID. The node with the lowest ID will be the group’s ID that will represent all
the other nodes that are reachable from it.

Some nodes can be reached only through several hops. For example, sup-
pose that a is the resource in our group with the lowest ID. The resource d

can be reached only through b and c. In order to efficiently calculate all nodes
reachable from the one with the lowest ID, we have developed a MapReduce
algorithm (reported in pseudocode in the Appendix A, algorithm 24) where we
incrementally create shorter paths starting from the node with the lowest ID
removing all the intermediate edges that are no longer needed. The algorithm
will terminate when all edges will originate from the node with the lowest ID
and there will not be any intermediate one. Looking back at our example,
the output of this algorithm would consist of the triples: (a sameAs b), (a
sameAs c), (a sameAs d) and (x sameAs y). These triples will form the
sameAs table since they contain the relation between each sameAs resource
(e.g. a,b,c, etc.) and their corresponding group key (e.g. a).

30 Forward-chaining reasoning with MapReduce

Replacing resources with their canonical representation

Since our purpose is to replace in the original dataset the resources in the
sameAs table with their canonical representation, we must perform a join be-
tween the input data and the information contained in the table. In principle,
the join is executed by partitioning the dataset on the single term but such ap-
proach suffers from a severe load balancing problem since the term distribution
is very uneven. We circumvent this problem by sampling the dataset to dis-
cover the most popular terms, and loading their eventual replacements in the
memory of all nodes (similar to our technique for performing joins between
schema and instance triples in RDFS). In our implementation, we typically
sample a random subset of 1% of the dataset. When the nodes read the data
in the input, they check whether the resource is already cached in memory.
If it is, the nodes replace it on-the-fly and send the outcome to a random
reduce task flagging it to be output immediately. For non-popular terms, the
standard partitioning technique is used to perform the join, but because these
terms are not popular, the partitioning will not cause load balancing issues.

Note that this approach is applicable to datasets with any popularity dis-
tribution: if we have a large proportion of terms that are significantly more
popular than the rest, they will be spread to a large number of nodes, dissipat-
ing the load balancing issue. If there is a small proportion of popular terms,
there will be enough memory to store the mappings.

2.3.4 Perform redundant joins to avoid load balancing
problems

Rules 15 and 16 are challenging because they require multiple joins. Both
rules are reported below:

Rule 15 Rule 16

if v owl:someValuesFrom w if v owl:allValuesFrom u

and v owl:onProperty p and v owl:onProperty p

and u p x and w rdf:type v

and x rdf:type w and w p x

then u rdf:type v then x rdf:type u

In this section, we only discuss rule 15. The discussion for rule 16 is entirely
analogous.

Rule 15 requires three joins on the antecedents’ patterns. Two of them
can be classified as schema patterns. These are the triples of the form (v

2.4 Evaluation 31

owl:someValuesFrom w) and (v owl:onProperty p). Since the schema is
typically small, we can load both patterns in each node’s main memory and
perform the join between them using standard techniques.

Still, there are two joins left to perform. The first join will be between
a small set (the result of the in-memory join) and a large one (the “type”
triples). This join will produce a large set of triples that needs to be further
joined with the rest of the input (the (u p x) pattern).

One option is to perform one of the remaining joins during the map phase
and the other during the reduce. In such a scenario, the product of the first
join is loaded in the nodes’ main memory and the second join is performed
against the “type” triples that are read in the input. When this join succeeds,
the triples are forwarded to the reduce phase so that the third join against the
remaining triples can be performed in the classical way.

There are two problems with this approach. First, it requires that one
of the two instance patterns (either the “type” triples or the generic one) is
always forwarded to the reduce phase to be matched during the third join.
Second, the third join would be performed on a single resource and this will
generate load balancing problems.

To solve these two problems, we perform the join between the schema and
both instance patterns during the map phase. This means that the “type”
triples will be matched on their objects (w) while all the other triples will be
matched on the predicate (p). After that, we partition the triples not only
on the common resource (x), but also on the common resource between the
schema (v) that we can easily retrieve from the in-memory schema.

The advantages of this technique are: (i) we filter both instance patterns so
that fewer triples will be forwarded to the reduce phase and (ii) we partition
the triples on two resources instead of one, practically eliminating the load
balancing issue.

The disadvantages are that we perform more joins than needed; however,
the joins are performed against an in-memory data structure and therefore
they do not introduce significant overhead in the computation.

2.4 Evaluation

In the previous sections we have described the problems of large scale reasoning
and a number of optimizations as solutions to them. We have implemented a
prototype called WebPIE and in this section we will evaluate its performance.

In our case performing an isolated evaluation of our optimizations is diffi-
cult because they cannot be evaluated independently to assess their real gain.

32 Forward-chaining reasoning with MapReduce

In fact, without these optimizations the system will fail due to the problems
they address (excessive duplicates derivation, etc.) so that an individual eval-
uation of the optimizations is technically impossible. Since we are obliged
to evaluate the system as a whole, we analyzed the performance varying the
parameters that might influence the reasoning performance. For example, we
tried to launch the reasoner on different inputs to verify how the performance
is related to the input size. We also measured the scalability either increasing
the input size or the number of nodes, etc. In the remaining of this section,
we report a detailed description of the experiments we conducted.

This section is organized as follows. We start off by providing a descrip-
tion of the prototype we have developed. Then, we give an overview of the
experimental parameters. Finally, we group our results and discuss them in
sections 2.4.3-2.4.5.

2.4.1 Implementation

We have used the Hadoop 1.0.3 [31] framework, an open-source Java implemen-
tation of MapReduce, to implement WebPIE. Hadoop is designed for clusters
of commodity machines and it can scale to clusters of thousand of machines.
It uses a distributed file system built from the local disks of the participating
machines, and manages execution details such as data transfer, job scheduling,
and error management. We configured the cluster using seven mappers and
reducers per nodes and activating the Google Snappy compression∗ to store
intermediate results. The code used for our experiments is publicly available
along with documentation and a tutorial [95].

2.4.2 Experimental parameters

The experimental parameters of our evaluation are described in this section.
Table 2.4 shows an overview of these parameters, their range and the default
values used. Unless otherwise specified, our experiments have been carried
out using the default values. In the rest of this section, we briefly describe the
meaning of these parameters.

Platform (Default value: DAS-4) We have performed most of our exper-
iments on the DAS-4 VU cluster. In this cluster, each node is equipped with
two quad-core Xeon processors, 24GB of main memory and two 1TB hard disk
in RAID-0 mode. The nodes are interconnected through a Gigabit Ethernet.

∗http://code.google.com/p/snappy/

http://code.google.com/p/snappy/

2.4 Evaluation 33

Parameter Range Default value
Platform DAS-4, Amazon EC2 DAS-4
Dataset LDSR, LLD, Bio2RDF, LUBM LDSR
Reasoning complexity RDFS, OWL OWL
No. nodes 1,2,4,8,16,32,64 32
Input size 1 billion-100 billion 1.3 billion

Table 2.4: Experimental parameters

We have also launched some experiments on the Amazon EC2 Cloud in
order to facilitate comparison with future systems and to demonstrate the
performance of WebPIE in the cloud. In this case, the Hadoop cluster consisted
of 4 large Amazon instances, each with 7.5GB of main memory, 850GB of hard
disk space and 4 EC2 CUs, roughly equivalent to 2 cores.

Datasets (Default value: LDSR) We launched WebPIE on a set of real-
world datasets: The Linked Data Semantic Repository (LDSR [49]) dataset
(later renamed to FactForge [24]) consists of several commonly-used datasets
like DBPedia, Freebase and Geonames. The Linked Life Data (LLD) dataset [51]
is a curated collection of datasets from the biomedical domain. In the same
domain, the Bio2RDF dataset [12] is currently the largest dataset with Seman-
tic Web data, consisting of more than 24 billion triples. Finally, we have also
used the Lehigh University Benchmark (LUBM) [30], which is a benchmark
for RDF, consisting of generated information in the academic domain. LUBM
can generate arbitrarily large datasets keeping with reasoning complexity.

In Table 2.5, we report the number of statements, the number of state-
ments for the OWL closure, and the number of distinct terms for each of these
datasets. Also, for every dataset we report the supported reasoning complexity
starting from one ’+’ if only limited RDFS/OWL reasoning is possible, and
going to three ’+’ when almost all RDFS and OWL rules are supported. An
intermediate number of ’+’ is to indicate the number of rules and should be
used to get a rough indication of the reasoning complexity on that dataset.

Our system operates on compressed data, using the method presented in
Chapter 3.

Reasoning complexity (Default value: OWL) We have performed ex-
periments using both the RDFS ruleset (where the optimizations described

34 Forward-chaining reasoning with MapReduce

Dataset Reasoning
complexity

#Triples
(Millions)

#Triples-OWL
(Millions)

#Terms
(Millions)

LDSR +++ 862 1790 259
LLD ++ 694 1024 448
Bio2RDF + 24000 25000 7302
LUBM ++ flexible flexible flexible

Table 2.5: Datasets used in our experiments (size, size under OWL closure
and number of distinct terms)

Dataset Input size
RDFS OWL

Thr. Der. Runtime Thr. Der. Runtime
LDSR 862 million 1284 621 189 6405
LLD 694 million 736 378 125 2651
Bio2RDF 24 billion 121 2703 23 26245
LUBM 1101 million 478 570 210 2362

Table 2.6: Reasoning time (in seconds) and throughput for only the derivation
(measured in 1K triples/sec) per dataset.

in Section 2.2 apply) and the more expressive OWL-Horst ruleset (where the
optimizations in Sections 2.2 and 2.3 apply). We have evaluated most of our
optimizations using the OWL-Horst ruleset.

Number of nodes (Default value: 32) To measure the scalability of our
approach given additional computational power, we launched the reasoner on
a varying number of nodes.

Input size (Default value: 1.3B triples) Similarly, to measure the scala-
bility of our approach regarding the input size we launched the reasoner varying
the input size. We note that we cannot compare the performance of real-world
datasets looking at their input size because they do not use the same language
expressivity. For this reason, we will use the LUBM benchmark (which can
scale arbitrarily in size) for evaluating the scalability of our system.

2.4 Evaluation 35

0"

200"

400"

600"

800"

Ru
n$

m
e'
(s
ec
on

ds
)'

Jobs'
0"

200"

400"

600"

800"

Ru
n$

m
e'
(s
ec
on

ds
)'

Jobs'

Figure 2.5: Runtime per job for LDSR (left) and LUBM (right)

2.4.3 Dataset and reasoning complexity

We launched WebPIE on different datasets and we report the runtimes in
Table 2.6 for RDFS and OWL materialization. We make the following obser-
vations:

• RDFS reasoning is significantly faster than OWL reasoning, with a factor
2 to 7. This outcome was expected because RDFS has fewer and simpler
rules than the OWL fragment and therefore it is easier to compute.

• The runtime and throughput of WebPIE is highly dependent on the logics
employed by the input data (this is because different datasets trigger a
different computation). Moreover, the computation time for the two
logics is not strongly correlated: If we consider the RDFS fragment, we
note that LLD yields the best results. However, for the OWL fragment,
LUBM is the one with the best performance.

• For Bio2RDF, the ratio of derivations compared to the size of the input
is low so that the majority of the execution consists of reading the input
rather than inferring triples. This attests to the relatively weak inference
possible over such large corpora.

To better illustrate how the input complexity affects the performance, we
report in Figure 2.5 the runtime of every MapReduce job when WebPIE is
launched on LUBM and LDSR. We observe the following: (i) reasoning with
the LDSR dataset is significantly more complex. Namely, while we need a total

36 Forward-chaining reasoning with MapReduce

320 4 8 16

700

0

100

200

300

400

500

600

#Nodes

Ru
nt

im
e

(m
in

ut
es

)

Observed
Linear

(a)

 0 4 8 16 32

1,4

0

0.2

0.4

0.6

0.8

1

1.2

#Nodes

Sc
al

ed
 s

pe
ed

-u
p Linear speed-up

(b)

Figure 2.6: (a) Runtime for the number of nodes (lower is better) (b) Scaled
speed-up (higher is better)

of 24 jobs for LUBM, while for LDSR, 55 jobs are required. (ii) The fastest jobs
take around 30 seconds to finish. This is attributed to the platform overhead
for starting a job. (ii) Most jobs take around between 30 and 60 seconds to
finish. In practice, this means that the execution time is dominated by the
platform overhead for starting jobs.

2.4.4 Scalability

We have evaluated the scalability of our approach in terms of input size and
number of nodes. For these experiments, we have used the LUBM dataset,
since to the best of our knowledge it is the only dataset that can be scaled to
arbitrary size without any side-effect on its complexity.

Figure 2.6 summarizes our findings concerning the performance of our sys-
tem for a varying number of nodes. Figure 2.6(a) shows the runtime for
calculating the closure of LUBM together with the (theoretical) linear speed-
up and Figure 2.6(b) shows the scaled speed-up. The latter is defined as
speed− up/no.nodes, and is an indicator for the efficiency of our system, given
additional computational nodes. A scaled speed-up of 1 means that given twice
the number of nodes the system will perform twice as fast.

In these experiments, we note that indeed the performance of our system
increases as we increase the number of nodes. However, such increase is not
proportional to the added number of nodes and it eventually flattens out until
there is almost no difference if we use more nodes. Such behavior is due to the
fact that after the cluster reaches enough capacity to launch simultaneously

2.4 Evaluation 37

1000 20 40 60 80

1000

0

200

400

600

800

Input size (billions)

Ru
nt

im
e

(m
in

)

y = 6.051x + 27.771 R²
 = 0.999

(a)

Triples
(billions)

Runtime
(min)

Throughput
Der.(Ktps)

0,1 33 25
0,5 37 111
1 39 214
5 58 717
10 82 1009
20 136 1217
100 636 1297

(b)

Figure 2.7: Runtime for increasing input size (on 64 nodes)

all the independent tasks of the jobs, it becomes irrelevant if more nodes are
added. Therefore, we can conclude than regardless of the number of nodes,
calculating the OWL closure of LUBM will not take less than approximately
40 minutes.

Figure 2.7 shows the runtime for an input size up to 100 billion triples on
64 nodes. Here, we see a similar situation as before: for small data sizes our
throughput is reduced, since the runtime is dominated by platform overhead.
However, as the size of the input grows, the throughput improves dramatically
as the platform overhead is amortized over the longer runtime. Such results
show that our method is more efficient for very large inputs where the platform
overhead is not predominant as it is with smaller datasets.

In general we notice that the performance is approximatively linear with
regard to the input size. This can be surprising considering that reasoning is
a task with a computational complexity worse than linear. The reason behind
the linear behavior is that LUBM is a benchmark that generates input with a
reasoning complexity proportional to its size. That means that if we double
the input size then also the computational complexity is doubled. Such feature
of LUBM fits with the purpose of this experiment because in order to measure
the scalability of this system with respect to the input size we do not want
that additional complexity might influence the performance.

We have also analyzed the nodes’ computational load during the reasoning
task in order to understand if there are notable unbalances. To this purpose,
we launched the reasoning process on the LUBM(8000) dataset using 32 DAS-
4 machines and in Figure 2.8 we report the amount of data processed by the

38 Forward-chaining reasoning with MapReduce

nodes. In the first figure, we report the average amount of data that each node
reads and writes during the map and reduce functions of the 24 MapReduce
reasoning jobs. From the figure, we notice that the amount of intermediate
data is considerably high on six cases. These jobs are the ones that clean the
duplicates and such behavior is expected since they read and group the entire
input in order to delete the duplicates. In the remaining cases, the amount
of data read in input is higher than the amount effectively processed. This
behavior indicates that in general only a small part of the input is relevant for
reasoning.

In the second figure, we report the total amount of read and written data
per node to verify that the computation is balanced across the nodes. Also in
this case, we divided the total amount of data between the read and written
in the map and reduce functions so that we can analyze their behavior inde-
pendently. First we notice that the output of the map function is not equally
distributed since there is a difference of a few gigabytes between the nodes.
This behavior is explained as follows: in our prototype we split the triples in
several files according to their predicate so that, depending on the reasoning
rule, we can read a smaller amount of data skipping irrelevant data. For exam-
ple, all the rdf:type triples are stored on files with extension ”type”. If there
is a rule for which the ”type” triples can’t be used, we skipped reading them
with consequent increase of performance. All the files are compressed and split
in blocks of 64 megabytes. The blocks are distributed across the nodes and for
each of them the node will apply the map function specific of the MapReduce
job. Each time, the amount read is constant (64 megabytes) but the number
of records might differ since the data is compressed and triples with the same
predicate will take less space (due to compression optimizations). Therefore,
some mappers might have to process more data and this explains the unbal-
ance among them. We must note that this unbalance is not excessive since
writing a few gigabytes of data does not take more than few minutes on a
computation that is often more than a hour.

The amount of data processed during the reduce phase is uniformly spread
across the nodes. This indicates that the optimizations that we explained in
the previous sections do result in a good balancing with consequent benefit in
terms of scalability.

From the above, it is safe to conclude that our approach scales gracefully
both in terms of the number of nodes and data size, given than the reasoning
task is large enough.

2.4 Evaluation 39

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900
 2000
 2100
 2200
 2300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
eg

ab
yt

es
 o

f d
at

a

MapReduce Jobs

Avg bytes read during map
Avg bytes written during map
Avg bytes read during reduce

Avg bytes written during reduce

(a) Average r/w data per job

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
eg

ab
yt

es

Nodes

Data read during map
Data written during map
Data read during reduce

Data written during reduce

(b) Total r/w data per node

Figure 2.8: Analysis of node computation per node during reasoning task

2.4.5 Platform

We have measured by launching the “top” command that, for the DAS-4, the
jobs are essentially I/O bound. Thus, our method would benefit from a hard-
ware setup with higher I/O throughput at the expense of lower CPU power.
In our evaluation we activated data compression to store the intermediate
map results with the attempt to reduce the I/O cost of transmitting and stor-
ing the intermediate data. While such choice makes the execution over small
datasets a bit slower (because the data compression costs CPU time which is
not needed if the data to write is small) its application over larger datasets is
beneficial since the CPU time needed to compress the data is paid off by the
advantage of storing much less data and this turns into a significant increase
of performance.

On the other hand, for the Amazon EC2 Cloud, our jobs are mostly CPU
bound. To facilitate comparison on a standard platform, we report that the
execution time for LUBM (1 billion) on the four large instances on Amazon
EC2 was 1064 minutes, 8 times slower than using 4 nodes on the DAS-4†.
This degrade in performance is expected, considering that our experiments
were running on virtualized and lower-spec hardware.

†This experiment was launched using an older version of the program which was pro-
ducing one less MapReduce job due to a bug in the code.

40 Forward-chaining reasoning with MapReduce

2.5 Related work

In this section we describe the related work regarding scalable reasoning with
high performance.

Hogan et al. [35, 36] compute the closure of an RDF graph using two passes
over the data on a single machine. Initially they have implemented only a
fragment of the OWL Horst semantics to allow more efficient materialization
and to prevent “ontology hijacking”. Later, the authors have extended their
original approach to support a subset of OWL 2 RL and present an evaluation
on 1.1 billion triples of a distributed implementation of their algorithms.

Schlicht and Stuckenschmidt [70] show peer-to-peer reasoning for the ex-
pressive ALC logic but focus on distribution rather than performance.

Soma and Prasanna [74] present a technique for parallel OWL inferenc-
ing through data partitioning. Experimental results show good speedup but
only on very small datasets (1M triples) and runtime is not reported. In con-
trast, our approach needs no explicit partitioning phase and we show that it
is scalable over increasing dataset size.

In [44] the authors present an inference engine that supports OWL 2 RL
implemented inside the Oracle database. They describe a set of techniques to
efficiently handle particular rules and they present an evaluation on a limited
number of machines on datasets up to 13 billion triples. While they directly
compare their performance against our work, we must point out that the two
systems are quite different both in terms of hardware and software and there-
fore a direct comparison should be carefully weighted.

In [45, 64], the authors have presented a technique based on data-partitioning
in a peer-to-peer network. A load-balanced auto-partitioning approach was
used without upfront partitioning costs. Experimental results were however
only reported for datasets of up to 200M triples.

In Weaver and Hendler [94], straightforward parallel RDFS reasoning on
a cluster is presented. This approach replicates all schema triples to all pro-
cessing nodes and distributes instance triples randomly. Each node calculates
the closure of its partition using a conventional reasoner and the results are
merged. To ensure that there are no dependencies between partitions, triples
extending the RDFS schema are ignored. This approach is not extensible to
richer logics, or complete RDFS reasoning, since, in these cases, splitting the
input to independent partitions is impossible.

In Mutharaju et al. [54], a method for distributed reasoning with EL++
using MapReduce is presented, which is applicable to the EL fragment of
OWL 2. This work was inspired by ours and tackles a more complicated logic
than the one presented here. It is still an on-going work and no experimental

2.6 Conclusion 41

results are provided.
Newman et al. [60] decompose and merge RDF molecules using MapReduce

and Hadoop. They perform SPARQL queries on the data but performance is
reported over a dataset of limited size (70,000 triples). Husain et al. [38] report
results for SPARQL querying using MapReduce for datasets up to 1.1 billion
triples.

The work on Signal/Collect [76], introduces a new programming paradigm,
targeted at handling graph data in a distributed manner. Although very
promising, it is not comparable to our approach, since current experiments
deal with much smaller graphs and are performed on a single machine.

Several proposed techniques are based on deterministic rendezvous-peers
on top of distributed hashtables [8, 16, 25, 42]. However, because of load-
balancing problems due to the data distributions, these approaches do not
scale [45].

Some Semantic Web stores support reasoning and scale to tens of billions
of triples [47]. We have shown inference on a triple set which is one order of
magnitude larger than reported anywhere (100 billion triples against 12 billion
triples). Furthermore, our inference is about 200 times faster (12 billion triples
in 290 hours for LUBM against 10 billion triples in 1 hour and 22 minutes
on 64 nodes) against the best performing reasoner (BigOWLIM). For LDSR,
BigOWLIM 3.1 processes 14Ktriples per second [48] while our system yields a
throughput of 189Ktps, on 32 nodes). It should be noted that the comparison
of our system with RDF stores is not always meaningful, as our system does
not support querying.

2.6 Conclusion

Summary In this chapter, we have shown a massively scalable technique for
parallel RDFS and OWL Horst forward inference and demonstrated inference
over 100 billion triples.

In order to improve the performance, we have introduced a number of key
optimizations to handle a specific set of rules. These optimizations are:

− Load the schema triples in memory and, when possible, execute the join
on-the-fly instead of in the reduce phase;

− Perform the joins during the reduce phase and use the map function to
group the triples in order to avoid duplicates;

− Execute the RDFS rules in a specific order to reduce the number of
MapReduce jobs;

42 Forward-chaining reasoning with MapReduce

− Limit duplicates when performing joins between instance triples using
contextual information;

− Limit the exponential derivation of owl:sameAs triples building a sameAs
table;

− Perform redundant joins to avoid load balancing problems.

Both in terms of processing throughput and maximum data size, our tech-
nique outperforms published approaches by a large margin.

Discussion of scope The computational worst-case complexity of even
the RDFS/OWL Horst fragment precludes a solution that is efficient on all
inputs. Any approach to efficient reasoning must make assumptions about the
properties of realistic datasets, and optimize for those realistic cases. Some of
the key assumptions behind our algorithms are: (a) The schema must be small
enough to fit in main memory; (b) for rules with multiple joins, some of the
joins must be performed in-memory, which could cause memory problems for
some unrealistic datasets or for machines with very limited memory; (c) we as-
sume that there is no ontology hijacking [35]; and (d) all the input is available
locally in the distributed filesystem. The difference in performance on LLD,
LDSR and LUBM shows that the complexity of the input data strongly affects
performance. Although it is easy to create artificial datasets which would de-
grade the performance, we did not observe such cases in realistic data. In fact,
the above assumptions (a)-(d) could also serve as guidelines in the design of
ontologies and datasets, to ensure that they can be used effectively.

Discussion on MapReduce In this work, we have implemented a rea-
soning method using the MapReduce programming paradigm. In principle,
the optimizations we have developed are not MapReduce-specific and can be
applied on top of any infrastructure with similar workings. Originally, MapRe-
duce operates in two discrete phases: a Map phase, where data is partitioned
and a Reduce phase, where data in a given partition is processed. In some of
our optimizations, we are deviating from this model by performing joins dur-
ing the Map phase (effectively skipping the partitioning phase and operating
on arbitrary parts of the input, together with a part of the input, replicated
across all nodes).

On a larger scope, the Map and Reduce phases correspond to what a term
partitioning system would do. In this sense, our system is similar to other sys-
tems doing term-partitioning (for example DHT-based systems). Replicating
part of the input and performing a join in the Map phase would correspond

2.6 Conclusion 43

to a broadcast, in such a context. Thus, we expect that many of the opti-
mizations presented in this chapter can be carried over to any system doing
term partitioning. Our choice of MapReduce was mainly made for reasons of
performance and scalability.

Future challenges The technique presented is optimized for the RDFS
and OWL-Horst rules. Future work lies in reasoning over user-supplied rule-
sets, where the system would choose the correct implementation for each rule
and the most efficient execution order, depending on the input.

Also, while we have identified a specific rule execution order for the RDFS
rules, future work is needed to identify whether there exists a similar order to
generally improve the performance for the OWL pD∗ rules.

Furthermore, in general our approach cannot efficiently deal with incre-
mental updates because every time the entire input must be read. We have
performed some experiments to tackle this issue in previous work but the re-
sults still shows that such operation is in general expensive (even it can be
improved considering only new triples in the derivation). Therefore, addi-
tional research is necessary to identify an efficient methodology to deal with
this issue.

Finally, as with all scalable triple stores, our approach cannot efficiently
deal with distributed data. Future work should extend our technique to deal
with data streamed from remote locations.

44 Forward-chaining reasoning with MapReduce

45

Chapter 3

Distributed RDF data compression

Terms in RDF triples consist of long strings which can be either URIs or
literals. Most Semantic Web applications, e.g. RDF storage engines, compress
the statements to a more compact representation to save disk storage space and
to increase performance. One of the most often used techniques to compress
data is dictionary encoding. In dictionary encoding, each term in a data set
is replaced with a numerical ID. Using the associated dictionary, data can be
decompressed into its original uncompressed form. Because of its simplicity,
this compressing technique is widely used in different fields.

Compressing the statements using a traditional centralized approach is be-
coming more and more time-consuming, and requires more and more memory
because the amount of Semantic Web data is growing at an exponential rate
(already comprising of many billions of statements [62]). To make dictionary
encoding a feasible technique on a very large input, a distributed implementa-
tion is required. To the best of our knowledge, no distributed approach exists
to solve this problem.

In this chapter we propose a technique to compress and decompress RDF
statements using the MapReduce programming model [21]. Our approach uses
a dictionary encoding technique that maintains the original structure of the
triple and therefore applications can use this format natively. This technique
can be used by all RDF applications that need to efficiently process a large

46 Distributed RDF data compression

amount of data, such as RDF storage engines, network analysis tools, and
reasoners.

In particular, this compression technique is a crucial component of our
work on reasoners, because it allows us to reason directly on the compressed
statements with a consequent increase of performance.

Characteristics of our compression technique are: (i) performance that
scales linearly; (ii) the ability to build a very large dictionary of hundreds of
millions of entries and (iii) the ability to handle load balancing issues with
sampling and caching.

The remaining of this chapter is structured as follows. In Section 3.1 we
discuss the conventional approach to dictionary encoding and highlight the
problems that arise. Sections 3.2 and 3.3 describe how we have implemented
the data compression and decompression in MapReduce. Section 3.4 evaluates
our approach and Section 3.5 describes related work. Finally, we conclude and
discuss future work in Section 3.6.

3.1 Dictionary Encoding

Dictionary encoding is often used because of it simplicity. In our case, dic-
tionary encoding has also the additional advantage that the compressed data
can still be manipulated by the application. Traditional techniques like gzip
or bzip2 hide the original data so that reading without decompression is im-
possible.

We report in Algorithm 3 a simple sequential algorithm to compress and
decompress RDF data using dictionary encoding. The algorithm starts by ini-
tializing the dictionary table. The table has two columns, one that contains
the terms in their textual representation and one that contains the correspond-
ing numerical ID. The algorithm reads all the statements and checks whether
the terms exist in the table. If a term exists, the algorithm retrieves the nu-
merical ID and replaces the term with the number. Otherwise, the algorithm
assigns a new numerical ID, inserts a new pair in the table, and proceeds with
the replacement. The algorithm outputs the compressed statements and the
dictionary table.

Decompressing statements is even more straightforward than compression.
For each term in the collection, the algorithm looks up the corresponding
textual version in the dictionary table and replaces the numerical ID.

Unfortunately, a sequential implementation of dictionary encoding does
not scale to the amounts of data present in the semantic web. One possible
solution is to partition the input and process these partitions on several ma-

3.1 Dictionary Encoding 47

Algorithm 3 Sequential algorithm of dictionary encoding

1 compress_data(Iterator statements) {
2 dictionary_table.initialize()
3 for (statement in statements) {
4 for (term in statement) {
5 if (not dictionary_table.contains(term) {
6 newID = dictionary_table.get_new_ID()
7 dictionary_table.put(term, newID)
8 term = newID
9 } else {

10 //Replace the string term with a numerical ID
11 term= dictionary_table.getID(term)
12 }
13 }
14 }
15 }
16
17 decompress_data(Iterator statements) {
18 for (statement in statements) {
19 for (term in statement) {
20 textualTerm = dictionary_table.getText(term)
21 term = textualTerm
22 }
23 }
24 }

chines. In this scenario, a central server will store the dictionary table and all
machines will query it to retrieve the numerical IDs. The problem with this
approach is that all machines will constantly need to query the dictionary,
making the dictionary server a performance bottleneck, and severely limiting
the scalability of this approach.

Another potential problem when compressing RDF data is the size of the
dictionary. For most applications of dictionary encoding the dictionary table
is small enough to fit in the machine’s main memory. For example, if we want
to compress English text there are normally not more than a few hundred
thousands distinct words in an English corpora. However, in a collection of
billions of web statements there are normally hundreds of millions of unique
terms. The dictionary for all these terms may not fit into the main memory
of a single machine. In this context, even the distributed approach described
above cannot handle this problem properly, as the central database machine
will still need to hold the entire database. Because of its size, storing the entire
dictionary on a single machine will lead to unacceptable performance.

To overcome the problems of runtime and memory usage, a completely new
approach is required. In the next sections, we describe our approach which
uses MapReduce to compress and decompress the data. Using this technique,

48 Distributed RDF data compression

we are able to compress one billion of statements in less than two hours, more
than one order of magnitude faster than conventional approaches.

3.2 MapReduce Data compression

MapReduce [21] is a distributed programming paradigm that we used in the
previous chapter to implement scalable forward-chaining reasoning (a descrip-
tion of the framework is presented in Section 2.1).

We can use the same programming model to implement data compression.
A naive implementation of dictionary encoding using MapReduce would read
all terms in the dataset, group them by the same value, and replacing each
value with a unique ID. This replacement step can be performed in a reduce
function, so that we exploit the functionality offered by MapReduce to group
all the pairs that share the same key.

Unfortunately, such approach has three main issues that compromise its
usage on a large scale. First, although we would like to process terms, our data
is made up of statements (triples containing three terms). Therefore, a naive
implementation would need to read the input three times, one to compress the
subjects, one for the predicate and one for the object.

Secondly, such MapReduce implementation would still require a synchro-
nized access to a central dictionary table to assign new numerical IDs and such
solution would introduce a potential new performance bottleneck.

The third issue is represented by the fact that RDF data has a high skew.
This means that a limited number of terms occurs many times in the dataset.
Therefore, the list of all terms created at the reduce function may not fit in
the main memory of a single machine. We cannot use a combiner function to
alleviate this problem because such function works only on local data during
the map phase, while the assignment process is performed during the reduce
phase.

In our approach, we address these problems as follows. We tackle the first
issue by first deconstructing all statements into a sequence of terms, compress
these terms, then reconstruct the statements, now in a compressed form. In
this way, we require to read the input only once.

We address the second issue by avoiding completely a centralized data
structure and we gradually build the dictionary table in a distributed manner
adding a new line every time a reducer processes a new group of terms. To
avoid conflicts, the IDs number space is partitioned in as many partitions
as the number of reducers and every reducer will be allowed to assign only
numbers that are within its own partition.

3.2 MapReduce Data compression 49

!"#$%&$'()*+',-$
."./012$+)234

565789:$
;<:=>

!""#$$%&''%(%!
)""#$$%&''%(%)
*"""""+++

!"#$?&$()@"*4+2/@+$4+1+)3)*+4

!"#$A&$2)@"*4+2/@+$4+1+)3)*+4

B<C6D>;:7C;$
>;9;<=<D;>

! !),-,
) !!!-!+++

67;57;
.!!!/".!/.)))/
* * +++
.,,!/".!),/".01/

.#$$%&''2/".#$$%&''3/.#$$%&''4/
* * +++

.#$$%&''5/".#$$%&''6/".#$$%&''7/
ED57;

BEC;E6
D9:F

BEC;E6
D9:F

(a) Compression algorithm

!"#$%&$'()*+',-$
."./012$+)234

565789:$
;<:=>

!
"

!"#$?&$@"'*$A'+B$
('C+'"*12-

!"#$D&$2)C"*4+2/C+$4+1+)3)*+4

E<F6G>;:7F;$
>;9;<=<G;>

#$$%&''(!")*)
#$$%&''+ !!!*!,,,

67;57;
-#$$%&''(./-#$$%&''+.-#$$%&''0.
1 1 ,,,
-#$$%&''2./-#$$%&''3./-#$$%&''4.

-!./-!"./-55.
1//////1//////,,,
-!6./-""./-7.

HG57; EHF;H6G9:I

!6HG<E$
;<:=>

,,,

!"#$J&$@"'*$A'+B$'*./+$(1+1

!///-#$$%&''222.
"///-#$$%&''(((.

,,,

(b) Decompression algorithm

Figure 3.1: Overall algorithms

We address the third issue by creating beforehand a list of all the popular
terms , assign them an unique ID and perform the replacement directly on
map function and not during the reduce as it is for all the other less popular
terms.

Our initial implementation [85] created the dictionary table from scratch.
As a result it was impossible to incrementally compress new data. Though this
limitation makes the approach more efficient and faster, incremental updates
is a feature which is strongly needed in real-world applications. In this chap-
ter, we present an extended version of our initial algorithms which support

50 Distributed RDF data compression

incremental updates, as well as other new features.
Figure 3.1a illustrates the overall compression algorithm of our approach.

It consists of a sequence of three MapReduce jobs. The first job identifies the
popular terms and assigns them a numerical ID. This algorithm is explained
in Section 3.2.1. The second job (Section 3.2.2) deconstructs the statements,
builds the dictionary table and replaces all terms with a corresponding nu-
merical ID. The last job (Section 3.2.3) will read the numerical terms and
reconstruct the statements in their compressed form. Finally, in Section 3.2.4
we explain how we can further compress the data by efficiently storing it on
disk.

3.2.1 Job 1: caching of popular terms

In RDF web data, the distribution of the terms is highly skewed, having few
popular terms and many that occur only few times. The purpose of the first job
is to identify the most popular terms so that we can treat them in a different
way. In order to do so, the job counts the occurrences of terms and creates
a list of the most popular terms. Since the input is large, counting all the
occurrences is an expensive operation. To increase performance, we randomly
sample the input and extract the popular terms (i.e. the terms which appear
more often than a specified threshold).

The algorithm is reported in pseudo code in Algorithm 4. It requires two
parameters to run: samplingPercentage that sets the size of the sampling
subset and threshold that sets the minimum occurrence to consider a term as
popular.

In order to allow incremental updates, the input of the compression algo-
rithm consists of both the data to compress, as well as any existing dictionary
(in the code we use a wrapper data structure to differentiate these two types
of data).

After the map function has sampled some terms, the reduce function checks
if a popular entry has already an ID assigned in a previous update. If this
is not the case, the function will assign it a number. As explained before, in
order to avoid conflicts the function is allowed to assign only numbers from
a specific range. To this purpose, in our prototype every reducer copies on
the 13th bit of an integer it own task id and use the first 13 bits as internal
counter. This means that there can be at most 219 − 1 reducers and each of
them can assign not more than 213 − 1 numbers.

After compression is finished, we store the last numbers assigned to make
the assignment process consistent during any further updates. If we do not do
so, the same ID may be assigned to different terms during different executions.

3.2 MapReduce Data compression 51

Algorithm 4 Dictionary encoding: counting the terms occurrences

1 map(key, value) { /*key: void; value: one statement or one dictionary entry*/
2 if (key is number && value is text) {
3 emit(value, key)
4 } else { /*it’s a statement*/
5 random = Random.newNumber(0:100)
6 if (random < samplingPercentage) {
7 emit(value.subject, null)
8 emit(value.predicate, null)
9 emit(value.object, null)

10 }
11 }
12 }
13
14 reduce(key, values) { /*key: one term in the collection; values: a sequence of null, or a

number if it’s a dictionary entry */
15 count = 0
16 number = 0;
17 for (value in values) {
18 if (value is not null) { /* The entry has already a number. Use it*/
19 number = value;
20 } else {
21 count += 1
22 }
23 }
24 if (count > threshold) {
25 if (number = 0)
26 number = assign_number(key)
27 emit(key,number)
28 }
29 }

3.2.2 Job 2: deconstruct statements, and assign IDs to
terms

The purpose of this job is to deconstruct the statements and compress the
terms with a numerical ID. This approach is used to avoid having to launch
one job for each part of the statement.

The algorithm is shown in Algorithm 5. Before the map phase starts, every
node reads the list of popular terms and corresponding ID from HDFS and
loads them into the main memory. Since there are only few popular terms,
they can fit in the main memory without any problem.

The map function reads the input that can be either a statement or a
dictionary entry. If the input tuples are statements then the function assigns
to each of them a numerical ID. Otherwise it forwards the dictionary entries to
the reducers. Because the map tasks are executed in parallel, we partition the
numerical range of the IDs so that each task is allowed to assign only a specific
range of numbers to the statements. In our prototype we use a 64-bit number

52 Distributed RDF data compression

Algorithm 5 Dictionary encoding: deconstruct the statements and assign
IDs to terms

1 map(key, value) { /*key: void; value: one statement or one dictionary entry*/
2 statement_id = counter++
3 if (value is statement) {
4 for (term in value) {
5 if (popular_terms.contains(term)) {
6 id = popular_terms.getID(term)
7 emit(id, statement_id+term_position)
8 } else {
9 emit(term, statement_id+term_position)

10 }
11 }
12 } else { /*the value is a dictionary entry*/
13 emit(value, key)
14 }
15 }
16
17 reduce(key, values) { /*key: term; value: statements IDs + terms
18 position or corresponding numerical value*/
19 if (key is numeric) { /*The term was already replaced during the map*/
20 for(value in values)
21 emit(key,value)
22 } else { /*scroll the values to see whether there is already a
23 number*/
24 number = -1
25 storage.empty()
26 for (value in values) {
27 if (value is dictionary key)
28 number = value
29 else
30 storage.add(value)
31 }
32 if (number = -1) {
33 number = assign_number(key)
34 emit(number,key) /*Dictionary table entry*/
35 }
36 while (value in storage)
37 emit(number,value)
38 }
39 }

as identifier and we split it in two parts: the first four bytes will contain the
id of the task that has processed the statement and the last four bytes will
be used as incremental counter within the task. In this configuration, we can
have at most 232− 1 map tasks and each task can process an input of at most
232 − 1 statements. If we reserve more bytes for the internal map counter,
then fewer map tasks can process a larger input, otherwise, if we reserve more
bytes to store the map task number, then we can have more map tasks that
process a smaller input.

3.2 MapReduce Data compression 53

For each term in the statements, the map function emits one intermediate
pair. The key of the pair will be different whether the term is a popular one
or not. If the term is a popular one, then the key will be the numerical ID
retrieved from the in-memory cache that we have previously loaded. These
pairs do not need to be further processed and can be output immediately. In
case the term is not present in the cache, the map function will set the textual
term as key. In both cases, the value of the pair will be the statement ID
and the position of the term within the statement (1 if it is a subject, 2 if
it is a predicate or 3 if it is an object). The statement IDs are used later to
reconstruct each statement from its terms.

We use a specific partitioner function to assign the intermediate pairs to
the reduce tasks. This function behaves as follows: if the key of the pair is a
number, then the pair will be randomly assigned to a reduce task. Otherwise,
if the key is a string, the hash function will be used to determine the reduce
task. Using this partitioning technique all the pairs with a term that was not
already replaced (i.e. those are the not popular) will be grouped together as
usual. The other pairs do not require any further processing, therefore they
are sent randomly to the nodes in order to avoid any load balancing issue.

During the reduce phase, each group will have either a textual or a nu-
merical key. If the key is a number, the pairs in the group refer to an already
converted popular term and the function will simply output the pairs. In the
other case, the function proceeds assigning a numerical ID to the term.

To support incremental updates, we must first scroll through all the values
to determine whether there is already a number assigned. The numerical IDs
are assigned in a similar way as for the statements. We use a long number
which is split in two parts: the first will contain the reduce task number
(starting from 1, otherwise the numbers will conflict with the popular ones)
while the second will be used as internal counter. For every pair in the group,
the reduce function will output a corresponding pair with the numerical ID
as key and the unchanged group input’s value. The function will also emit an
additional pair with the numerical value as key and the text as value. This
pair will be stored as part of the dictionary table.

Therefore, the output of this job will be:

− A set of pairs which will have the numerical terms as keys and the infor-
mation about the statements ID as values. These pairs will be used to
reconstruct the original triples in the next job.

− A set of additional pairs with the numerical term as key and the cor-
responding textual representation as value. These pairs will form the
dictionary table and be used to decompress the statements.

54 Distributed RDF data compression

Algorithm 6 Dictionary encoding: reconstruct the statements

1 map(key, value) { /*key: numerical term; value: statement ID + term position*/
2 emit(value.statementID, key + value.term_position)
3 }
4
5 reduce(key, values) { /*key: statement ID; value: numerical term + term position*/
6 for (value in values) {
7 case (value.term_position) {
8 ’subject’ : statement.subject = value.term_id;
9 break;

10 ’predicate’ : statement.predicate = value.term_id;
11 break;
12 ’object : statement.object = value.term_id;
13 break;
14 }
15 }
16 emit(null, statement)
17 }

− The last values assigned to the URIs by the reducers to allow incremental
compression if new data is added later.

3.2.3 Job 3: reconstruct statements

The last job reads in input what was returned by the previous one and recon-
structs the statements using the numerical IDs. The algorithm is reported in
Algorithm 6. The keys of the input pairs contain the terms in the numerical
format. The values contain the statement ID and the position of the term
within the statement (subject, predicate or object). The map function swaps
the input key with the input value and emits a new pair which has as key the
statement ID and as value the term plus its position.

The pairs will be grouped together for the reduce function. Since we now
have set the statement ID as key, the pairs will be grouped according to the
statement they belong to. Each group will have exactly three pairs, one for
each part of the statement. For each group, the reduce function will read the
three values and reconstruct the original statement with the numerical terms
positioning them according to their position which is stored in the pairs values.

3.2.4 Storing the term IDs

The initial version of our prototype used a fixed size number of 8 bytes to store
the term IDs. However, the full 8 bytes are not always required. For example,
the popular terms requires only 4 bytes to be stored and since these are many

3.3 MapReduce data decompression 55

we can have a notable gain of performance if we use numbers with variable
lengths.

As we explained in the previous sections, not-popular terms require 8 bytes
because the first 4 bytes are used to store the task ID which has processed that
term during the compression, while the remaining 4 bytes are used for the
counter within this task. However, if there are only few reduce tasks, the first
4 bytes are too many because the task ID will take less space. For example, if
we have 64 different reduce tasks, the algorithm will use at most 7 of the 32
reserved bits. The same holds for the last 4 bytes of the term ID. In case the
number of statements is not very high, much of the space will be unused.

Simply reducing the number of bytes for the term ID is not an option,
because eventual future updates may require the entire 8 bytes. Instead, we
adaptively use fewer bytes for the term ID, increasing the space only when
necessary.

In our solution, when we have to write a term ID on disk, we split the
number in the two parts it is made of, and write each of them separately.
Instead of using the fixed 4 bytes, we first write 2-3 bits with the number of
bytes required to write the value, followed by the value itself. Thus, in case we
have only 64 reduce tasks we will use only one byte to store the task ID and
not four. The result of this optimization is that we further compress the data,
reducing the space needed to store the values without losing any information.

3.3 MapReduce data decompression

After discussing the compression, we now focus on the decompression algo-
rithm. It uses much of the same techniques as the compression. Again, first
popular terms are handled separately, then the statements are deconstructed
into terms, processed (in this case term IDs are replaced with their original
value), and finally the statements are reconstructed using the textual terms
instead of the numeric ones.

Figure 3.1b illustrates the overall decompression algorithm. It consists
of a sequence of four MapReduce jobs. The first job identifies the popular
terms. The second job performs the join between the popular resources and
the dictionary table. The third algorithm deconstructs the statements and de-
compresses the terms performing a join on the input. The last job reconstructs
the statements in the original format.

The first and the last jobs are analogous to the ones explained in sections
3.2.1 and 3.2.3 and therefore they will not be further explained. The others
are described below.

56 Distributed RDF data compression

Algorithm 7 Dictionary decoding: join with the popular terms

1 map(key, value) { /*key: term numerical ID; value: textual version of the term*/
2 if (popular_terms.contains(key)) {
3 emit(key,value)
4 }
5 }

3.3.1 Job 2: join with dictionary table

The purpose of this job is to retrieve the corresponding textual equivalents of
the popular terms. Since the dictionary table contains hundreds of millions of
entries, we need to launch a MapReduce job to retrieve them.

The algorithm is reported in Algorithm 7. The map function loads the
popular terms in memory and reads the entries of the dictionary table. If the
table entry matches one of the popular terms, then the function outputs the
table entry. For this task a reduce function is not required.

3.3.2 Job 3: join with compressed input

The third job, which is reported in Algorithm 8, deconstructs the statements
and performs the join with the dictionary table. Before the map function
starts, a hash table is loaded in memory with the popular table dictionary
entries calculated in the previous job. This hash table will have the popular
textual terms as keys and the corresponding term IDs as values.

The input of the map function can be either a statement or a dictionary
table entry. If the input record is a statement, then the map function de-
constructs it as described in Section 3.2.2 and checks whether the terms are
popular or not. If they are, the function will emit the pairs setting as key the
text retrieved from the hash table. If not, the numerical ID will be used as a
key and the join will be performed on the single term during the reduce phase.
If the input record is an entry of the dictionary table, the function will emit a
pair with the numerical ID as key and the text as value.

Similarly as section 3.2.2, we set a specific partitioner function to assign
the pairs to the reduce tasks. The pairs with already converted terms will be
randomly sent to the reducers and immediately returned. The other pairs will
be grouped as usual and the join will be performed by the reduce function.

The reduce function stores the information on the statements in memory
and saves the corresponding text of the numerical key in a variable. After this,
the function will output new pairs with the textual term as keys and the values
stored in memory as values. The last job will reconstruct the statements such

3.4 Evaluation 57

Algorithm 8 Dictionary decoding: join against all the terms

1 map(key, value) {
2 /*key: in case dictionary table entry this is the numerical ID, otherwise it is

irrelevant*/
3 /*value: either a statement or the textual representation of the term*/
4
5 if (value is statement) {
6 statement_id = counter++
7 for (num_term in statement) {
8 if (popular_terms.contains(num_term)) {
9 textual_id = popular_terms.getID(num_term)

10 emit(textual_id, statement_id+term_position)
11 } else {
12 emit(num_term, statement_id+term_position)
13 }
14 }
15 } else {
16 emit(key, value)
17 }
18 }
19
20 reduce(key,values) {
21 if (key is text) { /*already processed popular term*/
22 for (value in values)
23 emit(key,value)
24 } else if (key is number) {
25 textual_term = null
26 for (value in values) {
27 if (value is statement) {
28 tmp_storage.add(value)
29 } else { /*value is the term textual repr.*/
30 textual_term = value
31 }
32 }
33 for (value in tmp_storage) emit(textual_term,value)
34 }
35 }

that the terms are restored to their original format and no longer encoded by
numbers.

3.4 Evaluation

We implemented an open-source Java prototype of the presented algorithms
using the Hadoop framework (version 0.20.2) to test their performance on a
realistic scenario. The prototype was compiled and launched using Java 1.6.

To test our prototype, we set up our Hadoop framework on 32 nodes of our
local DAS3 [18] cluster (the Hadoop and HDFS masters were running on the
cluster’s headnode). Each node is equipped with two dual-core 2.4 GHz AMD

58 Distributed RDF data compression

Dataset
(#
stats.)

Input Comp. output Comp.
rate

Runtime Throughput
size (GB) size (GB) (sec.) (stats/sec.)
Plain GZip Data Dict. Com. Dec. Com. Dec.

DBPedia
(110M)

17.4 1.9 1.4 1.0 7.33 665 619 166K 177K

Swoogle
(78M)

16.2 1.3 1.0 0.6 10.60 424 516 186K 153K

LUBM
(1101M)

158.9 7.0 14.0 1.9 10.02 4230 4847 260K 227K

Uniprot
(1857M)

230.9 18.0 23.4 5.4 8.02 8577 8975 216K 207K

LDSR
(1293M)

210.9 36.0 16.9 6.0 9.22 5685 6349 227K 204K

BTC
(3180M)

672.8 27.0 38.7 4.3 15.64 13212 14573 240K 218K

LLD
(694M)

113.0 3.4 8.2 3.0 10.06 3114 3612 223K 219K

Table 3.1: Execution time data compression and decompression on different
datasets

Opteron CPUs, 4 GB of main memory and 250 GB of storage. The nodes were
connected using Gigabit Ethernet. The Hadoop cluster was launched with the
standard settings.

The input of our tests consists of a set of text files where every line contains
one statement. The files were initially uploaded into the HDFS distributed
filesystem and then processed by our MapReduce algorithms.

We evaluated the performance of our approach as follows. First, in Section
3.4.1, we focus on the runtime and we report some measurements performed
on some real-world datasets. Next, in Section 3.4.2, we investigate the perfor-
mance of the cache while last, in Section 3.4.3, we report the results of some
tests to measure the scalability of our approach.

3.4.1 Runtime

We launched our prototype on several real-world and artificial datasets. DBPe-
dia [20] is a collection of statements extracted from Wikipedia pages. Swoogle [77]
contains statements collected by Web crawlers. LUBM [30] is a benchmark
tool that is widely used in the community. LDSR [49] and BTC [11] are
selected collection of datasets in the Web while Uniprot [81] and LLD [51]
contain biological information.

These datasets differ from each other not only in terms of size but also

3.4 Evaluation 59

Splits Chunk size Runtime (sec.)
1 99.4 GB 2531
2 49.5 GB 2789
4 24.5 GB 3188
8 12.4 GB 3753

Table 3.2: Execution time of incremental updates

because some contain larger statements than others (for example, in DBPedia
there are statements that contain all the text of one Wikipedia page as object)
and because they have a different term distribution. Therefore, it is interesting
to see how our compression method works with different types of input.

The results are presented in Table 3.1. There, we report the size of the
uncompressed input (both of the plain files and compressed with GZip), the
size of the compressed output produced with our technique, the runtime of the
compression and decompression algorithms, and other statistical information.

The size of the compressed output is the sum of the size of the data and of
the dictionary table (this last one was further compressed using the standard
zlib technique since typically applications do not need it until they have to
decompress the data). We report the size of both data and dictionary table,
to better understand the performance of the algorithms. The compression rate
was calculated dividing the size of the uncompressed input (in plain files) by
the total size of the compressed output, and varies from 1:7.33 (DBPedia) to
1:15 (BTC). We note that the compression rate increases when the dataset
uses fewer terms, and consequently the dictionary table is smaller.

The throughput is slightly higher as the input size increases and therefore
the platform overhead decreases. This is valid for the compression algorithm
and to a lesser extent also for the decompression.

We also note that the compression algorithm is between 1% and 20% faster
than the decompression algorithm for all but one dataset. We ran some tests to
investigate the reason behind that and we observed that changing the settings
of the cluster results in significant increase or decrease of performance. For
example, if we set three mappers and three reducers per node instead of two,
the decompression algorithm becomes faster on large datasets but worse on
smaller. We intentionally set the cluster with the standard settings because
we were interested on having a common base to evaluate the efficiency of the
algorithm rather than measure the fastest absolute performance. However,
we highlight the fact that by tuning the parameters, we can substantially
change the runtime of the compression. This explains the small difference in

60 Distributed RDF data compression

Threshold # Cache Runtime (sec.) Speedup
Disabled 0 3526 1
100M 1 2387 1.48
50M 1 2387 1.48
10M 12 1991 1.77
5M 36 2039 1.73
1M 111 2019 1.75
0.5M 195 2053 1.72

Table 3.3: Cache speedup for the compression algorithm.

performance with the results presented in our previous work [85].

The new feature of incremental updates increases the algorithms complex-
ity and therefore negatively affects the performance. We analyzed how much
slower the compression algorithm would be if, instead of compressing all the
data in one time, we would compress the data in little chunks.

To this purpose, we launched the following experiment: we took a dataset
(LUBM) and we compressed it in one time. Next, we split the input in two
chunks and we compressed it in two phases. We further split it in 4 and
8 chunks and compress one chunk at the time. The results are presented
in Table 3.2. As we expected, compressing chunks of data is slower than
compressing all the data in one time, as we have to reread the entire dictionary,
and check if terms are already present in the dictionary. The decrease in
performance is roughly proportional to the size of the chunk. To avoid a
considerable loss in performance, the updates should be done in large chunks,
instead of small ones. Nevertheless, the capability to handle updates may be
invaluable for certain real-world applications, and this could justify even larger
drops in performance.

3.4.2 Performance of the popular-term cache

We evaluated the beneficial effects of the popular-terms cache by launching∗

the compression algorithm on a fixed input (LDSR) and changing the size of
the cache. First, we disabled the cache, then, we increased the cache size by
decreasing the threshold used to identify the popular terms.

∗For this experiments we used the previous version of Hadoop (0.19.1) and disabled the
feature of allowing automatic updates as otherwise the algorithm would run out of memory
when the cache is disabled.

3.4 Evaluation 61

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
(m

in
ut

es
)

Input size (million of statements)

Decompression
Compression

Figure 3.2: Scalability of the compression/decompression algorithms on the
input size

The results are shown in Table 3.3. The first column shows the threshold
we used to build the cache. The larger the threshold, the more occurrences
of a certain term are required before we deem it popular. The second column
gives the size of the cache for the popular terms. We immediately see that
indeed the cache reduces the runtime, regardless of the threshold. If we lower
the threshold then both the cache size and performance increase. This is valid
up to a certain point: in fact, reducing the threshold below 10M no longer pro-
duces any notable performance difference. These results show that only a very
small number of terms is responsible for the degradation of the performance
(12 out of 259M) while the majority does not introduce any problem.

3.4.3 Scalability

We tested the scalability of our algorithm by launching the execution with
different input sizes and varying the number of nodes. Since real-world datasets
do not differ only in the size but also on other aspects (i.e. number of unique
terms and size of the statements), we used the LUBM benchmark tool to
generate artificial datasets of different sizes. LUBM can generate datasets
with a proportional number of unique terms and with a fixed statement size,
so we could test the performance without being influenced by the nature of
the input.

62 Distributed RDF data compression

We started by generating a dataset of 17 million statements. Then, we
repeatedly doubled the size until 1.1 billion statements were generated. On
each dataset we launched the compression algorithm, immediately followed by
the decompression algorithm. The runtime is reported in Figure 3.2.

If we compare the runtime of the compression algorithm with the one of
the decompression algorithm, we note that the latter becomes slightly slower
as the input increases. This difference shows that the compression algorithm
has a better scalability than the decompression algorithm regarding the input
size. Such behavior could be explained that compressing a dataset generates
less intermediate data than decompressing it since the algorithm performs the
replacement as soon as possible. Therefore, while in the first case the amount
of data could still fit in memory, in the second case it will require writing it
on disk with consequent loss of performance.

We also tested the scalability of our approach by launching the execution
on a fixed input on clusters with a different number of nodes. We have used a
LUBM dataset of 500 million statements as input and we kept the number of
mappers (256) and reducers (128) constant. We varied the number of nodes,
starting at 1 and doubling up to 64. In Table 3.3a we report the runtime of
the two algorithms, the absolute speedup and the relative speedup, which is
the speedup calculated compared to the previous line in the table (half the
number of nodes). From the table, we see that the runtime decreases as we
increase the number of nodes.

We have plotted the speedup in Figure 3.3b and we observe from it that it
is superlinear in both cases. However, by looking at the relative speedup we
notice that on larger numbers of nodes the performance gain decreases until
it shows linear scalability. In this case, the superlinear behavior might be
misleading because it implies better performance on a limited number of nodes,
instead of more. However, the reason for such behavior can be explained from
the fact that the Hadoop framework is designed to work on large clusters so
that resources are more efficiently utilized in a distributed environment rather
than on a single machine. For example, since in our case the performance
is I/O bounded, if the computation is not spread between enough nodes, the
performance degrades considerably (e.g. because of the too many requests
a single disk has to process) which means that a single machine execution
performs worse than it should when compared with two or more machines.
This is why the decompression algorithm, which produces more I/O than the
compression, has an initial higher speedup than the compression one.

Because of this, it is more appropriate to consider the execution time on a
large cluster and, in doing that, we conclude that the two algorithms exhibit
a linear speedup rather than a superlinear one.

3.4 Evaluation 63

Nodes Runtime
compr.
(sec.)

Runtime
decompr.
(sec.)

Speedup
compr.

Speedup
decompr.

Relative
speedup
compr.

Relative
speedup
decompr.

1 2262 7027 - - - -
2 727 2059 3.11 3.41 3.11 3.41
4 267 673 8.47 10.44 2.72 3.06
8 111 253 20.38 27.77 2.41 2.66
16 51 104 44.35 67.57 2.18 2.43
32 26 48 87.00 146.40 1.96 2.17
64 14 24 161.57 292.79 1.86 2.00

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290
 300

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
p
e
e
d
u
p

Number of Nodes

Compression
Decompression

(b)

Figure 3.3: Scalability of the compression/decompression algorithms changing
the number of nodes

64 Distributed RDF data compression

3.5 Related work

Single machine dictionary encoding is used in RDF storage engines like Hexa-
store, 3Store and Sesame to store the information more efficiently [1, 15, 96].
Inference engines like WebPIE [82, 84, 86] and OWLIM [43] also compress the
data with this technique.

An overview of compression techniques that can be applied to RDF data
is presented in [26]. In this short paper, the authors consider three different
techniques: the standard “gzip” compression, a compression based on adja-
cency lists and dictionary encoding. From their evaluation, they show that the
compression highly depends on the structure of the data and that dictionary
encoding is the most efficient if there is a considerable number of URIs in the
dataset.

In [50] the authors propose a technique to apply structured dictionary
encoding to the URIs present in the RDF files. This technique works at two
levels: first it compresses the namespace of the URI and after it proceeds
compressing the rest of the URI using the namespace as reference. Though
the work is still in its early stages, the evaluation shows how indeed such
compression technique is an improvement over the traditional gzip of between
19.5 and 39.5%.

Another work on the topic of compressing URLs is described in [53]. Here,
the authors focus on the problem of maintaining efficient web caching and they
present a simple URL table compression algorithm. The algorithm is based on
hierarchical decomposition of the URL in order to aggregate common prefixes
and use an incremental hashing function to minimize the collisions between
the prefixes. By introducing this technique, the authors minimize the time
needed to access the cache and compress the information at the same time.

Dictionary encoding is not only used within the Semantic Web but also in
several other domains. In [98] dictionary encoding is used for image compres-
sion. In [55] the authors present some parallel techniques to compress data
using an pre-existing dictionary.

In some domains, the dictionary is small enough to be kept in main mem-
ory. A good comparison between the performance of different in-memory data
structures is given in [99]. From the comparison, it is clear that the hash
table is the fastest data structure. [34] proposes a new data structure, called
burst trie which maintains the strings in sorted, or near-sorted order, and has
performance comparable to the one of a tree.

The decompression algorithm requires that we perform a join on the data
but the original MapReduce paradigm does not provide any tool to perform
efficient joins. An extension to the MapReduce programming model is called

3.6 Conclusions and Future Work 65

Map-Reduce-Merge [97] and it aims to extend MapReduce to support data
joins. Other frameworks, like Pig [63], or Hive [79] are built on top of Hadoop
and they provide SQL-like languages to run queries on very large datasets.

3.6 Conclusions and Future Work

In this chapter we have proposed a technique to compress RDF data using
the MapReduce programming model. We have shown how we can exploit
the features of MapReduce to compress a large amount of data building a
dictionary of hundreds of millions of entries.

We have implemented a prototype using the Hadoop framework. We evalu-
ated the performance measuring the runtime using existing datasets and tested
the scalability increasing the input size and number of nodes. The evaluation
showed that the MapReduce algorithms are able to compress and decompress
a large input with a high throughput and that both algorithms are more ef-
ficient for larger inputs. We also noticed that the compression algorithm is
slightly more efficient than the decompressing algorithm.

The work we have presented can be extended in a number of ways. For
example, these algorithms could be extended to work in different domains.
Our approach is targeted at domains where there are large dictionaries but
it could be interesting, for example, to see whether it could be adapted to
perform generic text compression encoding the words with numbers. In this
case, we could assign progressive IDs to the sentences and deconstruct them
as we did with the statements.

Another interesting direction could be to build a structured dictionary
where we could assign similar numbers to URIs which are similar as well (for
example because they share the same namespace). Actually we assign numbers
based on the hashcode of the URIs but if we can encode a notion of “closeness”
or a similar semantical relationship in our process, all the applications which
apply semantical operations, for example ranking of statements, would not
need to decompress the numbers but use them directly with a consequent
increase of performance.

66 Distributed RDF data compression

67

Chapter 4

Querying RDF data with Pig

After the inference is computed, the user must face the problem of efficiently
querying a large collection of data. Because of the large input size, the user
queries can be translated into “killer” SPARQL queries that overwhelm the
current state-of-the-art in RDF database systems. Such problems typically
come down to formulating joins that produce huge results, or to RDF database
systems that calculate the wrong join order such that the intermediate results
get too large to be processed.

In this chapter we consider the problem of performing complex SPARQL
queries on a very large knowledge base and propose a system that uses MapRe-
duce and the Pig Latin language to perform an efficient execution. In doing
so, we are considering some key issues:

Schema-less. A SPARQL query optimizer typically lacks all schema knowl-
edge that a relational system has available, making this task more challeng-
ing. In a relational system, schema knowledge can be exploited by keeping
statistics, such as table cardinalities and histograms that capture the value
and frequency distributions of relational columns. RDF database systems,
on the other hand, cannot assume any schema and store all RDF triples in
a table with Subject, Property, Object columns (S,P,O). Both relational col-
umn projections as well as foreign key joins map in the SPARQL equivalent
into self-join patterns. Therefore, if a query is expressed in both SQL and

68 Querying RDF data with Pig

SPARQL, on the physical algebra level, the plan generated from SPARQL will
typically have many more self-joins than the relational plan has joins. Because
of the high complexity of join order optimization as a function of the num-
ber of joins, SPARQL query optimization is more challenging than SQL query
optimization.

Correlations. In order to estimate the join hit ratios with the same precision
as relational systems, RDF systems would need to keep detailed statistics.
Such detailed statistical information is simply not available, because of the
sheer amount of possibly relevant selection criteria. Some systems keep statis-
tics on certain “often used” traversal paths [59], while others try to guess hit
ratios from the shape of the join patterns [57]. These methods, however, do not
offer a general solution to this problem, and optimization of complex queries
can lead to very bad plans even in state-of-the-art RDF systems.

RDF systems typically try to mitigate some of the problems by creating
multiple permutations of the S,P,O columns, storing them in multiple B-tree
indices (sometimes even all six possible permutations [10, 59, 96]). Such re-
dundant storage is useful to efficiently answer leaf patterns in queries (in which
two of the three S,P,O values are bound) and can also be used to estimate the
size of such selections at query optimization time. However, such redundant
storage can help only in the first join step of query execution.

MapReduce and Skew. Linked Open Data ETL tasks which involve clean-
ing, interlinking and inferencing have a high computational cost, which moti-
vates our choice for a MapReduce approach.

In a MapReduce-based system, data is represented in files that can come
from recent Web crawls. Hence, we have an initial situation without statistics
and without any B-trees, let alone multiple B-trees. One particular problem
in raw Web data is the high skew in join keys in RDF data. Certain subjects
and properties are often re-used (most notorious are RDF Schema properties)
which lead to joins where certain key-values will be very frequent. These keys
do not only lead to large intermediate results, but can also cause one machine
to get overloaded in a join job and hence run out of memory (and automatic
job restarts provided by Hadoop will fail again). This is indeed more general
than joins: in the sort phase of MapReduce, a large amount of data might
need to be sorted on disk, severely degrading performance.

SPARQL on Pig. In this chapter, we describe a system that scalably exe-
cutes SPARQL queries using the Pig Latin language [63] and we demonstrate
its usage on a synthetic benchmark and on crawled Web data. For this task,
we use a standard cluster and the large MapReduce infrastructure provided
by Yahoo!.

4.1 SPARQL with Pig: overview 69

The Pig Latin language provides operators to scan data files on a Hadoop
cluster that form tuple streams, and further select, aggregate, join and sort
such streams, both using ready-to-go Pig relational operators as well as using
user-defined functions (UDFs). Each MapReduce job materializes the inter-
mediate results in files that are replicated in the distributed filesystem. Such
materialization and replication make the system robust, such that the jobs of
failing machines can be restarted on other machines without causing a query
failure. However, from the query processing point of view, this materialization
is a source of inefficiency [75]. The Pig framework attempts to improve this
situation by compiling Pig queries into a minimal number of Hadoop jobs,
effectively combining more operators in a single MapReduce operation. An
efficient query optimization strategy must be aware of it and each query pro-
cessing step should minimize the number of Hadoop jobs.

Our work addresses these challenges and proposes an efficient translation
of some crucial operators into Pig Latin, namely joins, making them robust
enough to deal with the issues typical of large data collections.

Contributions. We can summarize the contributions of this work as follows.
(i) We have created a system that can compute complex SPARQL queries on
huge RDF datasets. (ii) We present a runtime query optimization framework
that is optimized for Pig in that it aims at minimizing the number of MapRe-
duce jobs, therefore reducing query latency. (iii) We describe a skew-resistant
join method that can be used when the runtime query optimization discovers
the risk for a skewed join distribution that may lead to structural machine
overlap in the MapReduce cluster. (iv) We evaluate the system on a standard
cluster and a Yahoo! Hadoop cluster of over 3500 machines using synthetic
benchmark data, as well as real Web crawl data.

Outline. The rest of this chapter is structured as follows. In Section 4.1 we
present our approach and describe some of its crucial parts. In Section 4.2 we
evaluate our approach on both synthetic and real-world data. In Section 4.3
we report on related work. Finally, in Section 4.4, we draw conclusions and
discuss future work.

4.1 SPARQL with Pig: overview

In this section, we present a set of techniques to allow efficient querying
over data on Web-scale, using MapReduce. We have chosen to translate the
SPARQL 1.1 algebra to Pig Latin instead of making a direct translation to
a physical algebra in order to readily exploit optimizations in the Pig engine.

70 Querying RDF data with Pig

While this work is the first attempt to encode full SPARQL 1.1 in Pig, a com-
plete description of such process is elaborate and goes beyond the scope of this
chapter.

The remaining of this section is organized as follows: in Sections 4.1.1
and 4.1.2, we present a method for runtime query optimization and query
cost calculation suitable for a batch processing environment like MapReduce.
Finally, in Section 4.1.3, we present a skew detection method and a specialized
join predicate suitable for parallel joins under heavy skew, frequent on Linked
Data corpora.

4.1.1 Runtime query optimization

In this work, we adapt the ROX query optimization algorithm [2, 41] to
SPARQL and MapReduce. ROX interleaves query execution with joins sam-
pling, in order to improve result set estimates. Our specific context differs to
that of ROX in that:

− SPARQL queries generate a large number of joins, which often have a
multi-star shape [27].

− The overhead of starting MapReduce jobs in order to perform sampling
is significant. The start-up latency for any MapReduce job lies within
tens of seconds and minutes.

− Given the highly parallel nature of the environment, executing several
queries at the same time has relatively small impact on the execution
time of each query.

Algorithm 9 outlines the basic block of our join order optimization algo-
rithm. To cope with the potentially large number of join predicates in SPARQL
queries, we draw from dynamic programming and dynamic query optimization
techniques, constructing the plans bottom-up and partially executing them.

Initially, we extract from the dataset the bindings for all statement pat-
terns in the query and calculate their cardinalities. From initial experiments,
given the highly parallel nature of MapReduce, we have concluded that the
cost of this operation is amortized over the execution of the query since we
are avoiding several scans over the entire input. Then, we perform a series
of construct-prune-sample cycles. The construct phase generates new solu-
tions from the partial solutions in the previous cycles. These are then pruned
according to their estimated cost. The remaining ones are sampled and/or
partially executed. The pruning and sampling phases are optional. We will

4.1 SPARQL with Pig: overview 71

Algorithm 9 Runtime optimization

1 J : Set of join operators in the query
2 L: List of sets of (partial) query plans
3 void optimize joins(J) {
4 execute(J)
5 L0:=(J)
6 i:=1
7 while (Li−1 6= ∅)
8 for (j ∈ Li−1)
9 for (I ∈ {L0...Li−1})

10 for (k ∈ I)
11 if (j 6= k)
12 Li.add(construct(j,k))
13 if (stddev(cost(Li))/
14 mean(cost(Li)) > t)
15 prune(Li)
16 sample(Li)
17 i:=i + 1
18 }

only sample if stddev(costs)/mean(costs) is higher than some given threshold,
so as to avoid additional optimization overhead if the cost estimates for the
candidate plans are not significantly different.
Construct During the construct phase (lines 8-12 in Algorithm 9), the results
of the previous iterations are combined to generate new candidate (partial)
plans. A new plan is generated by either adding an argument to an existing
node when possible (e.g. making a 2-way join a 3-way join) or by creating a
new join node.
Prune We pick the k% cheapest plans from the previous phase, using the cost
calculation mechanism described in Section 4.1.2. The remaining plans are
discarded.
Sample To improve the accuracy of the estimation, we fully execute the plan
up to depth 1 (i.e. the entire plan minus the upper-most join). Then, we use
Algorithm 10 to perform bi-focal sampling.

There is a number of salient features in our join optimization algorithm:

− There is a degree of speculation, since we are sampling only after con-
structing and pruning the plans. We do not select plans based on their
calculated cost using sampling, but we are selecting plans based on the
cost of their ‘sub-plans’ and the operator that will be applied.

− Nevertheless, our algorithm will not get ‘trapped’ into an expensive join,

72 Querying RDF data with Pig

since we only fully execute a join after we have sampled it in a previous
cycle.

− Since we are evaluating multiple partial solutions at the same time, it is
essential to re-use existing results for our cost estimations and to avoid
unnecessary computation. Since the execution of Pig scripts and our
run-time optimization algorithm often materialize intermediate results
anyway, the latter are re-used whenever possible.

4.1.2 Pig-aware cost estimation

Using a MapReduce-based infrastructure gives rise to new challenges in cost
estimation. First, queries are executed in batch and there is significant over-
head in starting new batches. Second, within batches, there is no opportunity
for sideways information passing [58], due to constraints in the programming
model. Third, when executing queries on thousands of cores, load-balancing
becomes very important, often outweighing the cost for calculating intermedi-
ate results. Fourth, random access to data is either not available or very slow
since there are no data indexes. On the other hand, reading large portions of
the input is relatively cheap, since it is an embarrassingly parallel operation.

In this context, we have developed a model based on the cost of the follow-
ing: Writing a tuple (w); Reading a tuple (r); The cost of a join per tuple. In
Hadoop, a join can be performed either during the reduce phase (jr), essen-
tially a combination of a hash-join between machines and a merge-join on each
machine, or during the map phase (jm) by loading one side in the memory of
all nodes, essentially a hash-join. Obviously, the latter is much faster than
the former, since it does not require repartitioning of the data on one side or
sorting, exhibits good load-balancing properties, and requires that the input
is read and written only once; The depth of the join tree(d), when consider-
ing only the reduce-phase joins. This is roughly proportional to the number
of MapReduce jobs required to execute the plan. Considering the significant
overhead of executing a job, we consider this separately from reading and
writing tuples.

The final cost for a query plan is calculated as the weighted sum of the
above, with indicatory weights being 3 for w, 1 for r, 10 for jr, 1 for jm and
a value proportional to the size of the input for d.

4.1 SPARQL with Pig: overview 73

Algorithm 10 Bi-focal sampling in Pig

1 DEFINE bifocal sampling(L, R, s, t)
2 RETURNS FC {
3 LS = SAMPLE L s;
4 RS = SAMPLE R s;
5 LSG = GROUP LS BY S;
6 RSG = GROUP RS BY S;
7 LSC = FOREACH LSG GENERATE flatten(group), COUNT(LSG) as c;
8 RSC = FOREACH RSG GENERATE flatten(group), COUNT(RSG) as c;
9 LSC = FOREACH LSC GENERATE group::S as S ,c as c;

10 RSC = FOREACH RSC GENERATE group::S as S ,c as c;
11 SPLIT LSC INTO LSCP IF c>=t, LSCNP IF c<t;
12 SPLIT RSC INTO RSCP IF c>=t, RSCNP IF c<t;
13
14 // Dense
15 DJ = JOIN LSCP BY S, RSCP BY S using ’replicated’;
16 DJ = FOREACH RA GENERATE LSCP::c as c1, RSCP::c as c2;
17 // Left sparse
18 RA = JOIN RSC BY S, LSCNP BY S;
19 RA = FOREACH RA GENERATE LSCNP::c as c1, RSC::c as c2;
20
21 // Right sparseLA = JOIN LSC BY S, RSCNP BY S;
22 LA = FOREACH LA GENERATE LSC::c as c1, RSCNP::c as c2;
23 // Union results
24 AC = UNION ONSCHEMA DA, RA, LA;
25
26 $FC = FOREACH AC GENERATE c1∗c2 as c;
27 }

4.1.3 Dealing with Skew

The significant skew in the term distribution of RDF data has been recognized
as a major barrier to efficient parallelization [45]. In this section, we are
presenting a method to detect skew and a method for load-balanced joins in
Pig.

Detecting skew

To detect skew (and estimate result set size), we are presenting an implemen-
tation of bi-focal sampling [28] for Pig and report the pseudocode in Algo-
rithm 10. Similar to join optimization, one of the main goals is to minimize
the number of jobs. L, R,s and t refer to the left and right sides of the join, the
sampling rate and the number of tuples that the memory can hold respectively.
Initially, we sample the input (lines 3-4), group by the join keys (lines 5-6) and

74 Querying RDF data with Pig

count the number of occurrences of each key (lines 7-10). We split each side of
the join by key popularity using a fixed threshold, which is dependent on the
amount or memory available to each processing node (lines 11-12). We then
perform a join between tuples with popular keys (lines 15-16) and a join for
each side for tuples with non-popular keys and the entire input (lines 18-24).

This algorithm generates seven MapReduce jobs out of which two are Map-
only jobs that can be executed in parallel and four are jobs with Reduce phases
that happen concurrently in pairs. In fact, it is possible to implement our
algorithm in two jobs, programming directly on Hadoop instead of using Pig
primitives.

Determining join implementation

In Pig, it is up to the developer to choose the join implementation. In our
system, we choose according to the following:

− If all join arguments but one fit in memory, then we perform a repli-
cated join. Replicated joins are performed on Map side by loading all
arguments except for one into main memory and streaming through the
remaining one.

− If we have a join with more than two arguments and more than one of
them do not fit in memory, we are performing a standard (hash) join.

− If the input arguments or the results of the (sampled) join present signif-
icant skew, we perform the skew resistant join described in the following
section.

Skew-resistant join

As a by-product of the bi-focal sampling technique presented previously, we
have the term distribution for each side of the join and an estimate of the
result size for each term. Using this information, we can estimate the skew as
the ratio of the maximum number of results for any key to the average number
of results over all keys. Hadoop has some built-in resistance to skewed joins
by means of rescheduling jobs to idle nodes, which is sufficient for cases where
some jobs are slightly slower than others. Furthermore Pig has a specialized
join predicate to handle a skewed join key popularity [29], by virtue of calcu-
lating a key popularity histogram and distributing the jobs according to this.
Nevertheless, neither of these algorithms can effectively handle skewed joins
where a very small number of keys dominates the join. We should further note

4.1 SPARQL with Pig: overview 75

Algorithm 11 Skew-resistant join

1 DEFINE skew resistant join(A, B, k)
2 RETURNS result {
3 SA = SAMPLE A 0.01; //Sample first side
4 GA = GROUP SA BY O;
5 GA2 = FOREACH GA GENERATE COUNT STAR(SA), group;
6 OrderedA = ORDER GA2 BY $0 DESC;
7 PopularA = LIMIT OrderedA k;
8 SB = SAMPLE B 0.01; //Sample second side
9 GB = GROUP SB BY S;

10 GB2 = FOREACH GB GENERATE COUNT STAR(SB), group;
11 OrderedB = ORDER GB2 BY $0 DESC;
12 PopularB = LIMIT OrderedB k;
13
14 PA = JOIN A BY O LEFT, PopularA BY O USING ’replicated’;
15 PPA= JOIN PA BY O LEFT, PopularB BY S USING’replicated’;
16 PB = JOIN B BY S LEFT, PopularB BY S USING ’replicated’;
17 PPB= JOIN PB BY S LEFT, PopularA BY S USING ’replicated’;
18
19 SPLIT PPA INTO APopInA IF PopularA::O is not null,
20 APopInB IF PopularB::S is not null, ANonPop IF
21 PopularA::0 is not null and PopularB::S is not null;
22
23 SPLIT PPB INTO BPopInB IF PopularB::S is not null, BPopInA
24 IF PopularA::O is not null and PopularB::S is null, BNonPop
25 IF PopularA::0 in not null and PopularB::S is not null;
26
27 // Perform replicated joins for popular keys
28 JA= JOIN BPopInB BY S, APopInB BY O USING ’replicated’;
29 JB= JOIN APopInA BY S, BPopInA BY S USING ’replicated’;
30 // Standard join for non−popular keys
31 JP = JOIN ANonPop BY O, BNonPop BY S;
32
33 $result = UNION ONSCHEMA JA, JB, JP; }

76 Querying RDF data with Pig

that, since there is no communication between nodes after a job execution has
started, a skewed key distribution will cause performance problems even if the
hit rate for those keys is low. This is because MapReduce will still need to
send all the tuples corresponding to these popular keys to a single reduce task.

Our algorithm executes a replicated join for the keys that have a highly
skewed distribution in the input and a standard join for the rest. In other
words, joining on keys that are responsible for load unbalancing is done by
replicating one side on each machine and performing a local hash join. For
the remaining keys, the join is executed by grouping the two sides by the
join key and assigning the execution of each group to a different machine
(as is standard in Pig). In Algorithm 11, we present the Pig Latin code for
an example join of expressions A and B∗, on positions O and S respectively.
Initially, we sample and extract the top-k popular terms for each side (lines 3-
12), PopularA and PopularB respectively. Then, for each side of the input, we
perform two left joins to associate tuples with PopularA and PopularB (lines
14-17). This allows us to split each of our inputs to three sets (lines 19-25),
marked accordingly in Figure 4.1:

1. The tuples that correspond to keys that are popular on the other side
(e.g. for expression A the keys in PopularB). For side B, we put an
additional requirement, namely that the key is not in PopularB. This is
done to avoid producing the results for tuples that are popular twice.

2. The tuples that correspond to keys that are popular on the same side
(e.g. for expression A the keys in PopularA).

3. The tuples that do not correspond to any popular keys on either side.

We use the above to perform replicated joins for the tuples corresponding to
popular terms and standard joins for the tuples that are not. The tuples in
A corresponding to popular keys in A (APopInA) are joined with the tuples
in B that correspond to popular keys in A using a replicated join (line 28).
The situation is symmetric for B (line 29). The tuples that do not correspond
to popular keys from either side are processed using a standard join (line 31).
The output of the algorithm is the union of the results of the three joins.

We should note that our algorithm will fail if APopInB and BPopInA are
not small enough to be replicated to all nodes. But this can only be true if
there are some keys that are popular in both sets. Joins with such keys would
anyway lead to an explosion in the result set (since the result size of each of
these popular keys is the product of their appearances in each side).

∗for brevity, we have omitted some statements that project out columns that are not
relevant for our algorithm

4.2 Evaluation 77

Not
popular

Popular
in A

Popular
in B

A

Popular
in A and B

Not
popular

Popular
in B

Popular
in A

Popular
in A and B

B
1

1

2 2

3
3

Figure 4.1: Schematic representation of the joins to implement the skew-
resistant join

4.2 Evaluation

We present an evaluation of the techniques presented in this chapter using
synthetic and real data, and compare our approach to a commercial RDF
store.

We have used two different Hadoop clusters in our evaluation: a modest
cluster, part of the DAS-4 distributed supercomputer, and a large cluster in-
stalled at Yahoo!. The former was used to perform experiments in isolation
and consists of 32 dual-core nodes, 4 GB of RAM and 250 GB of local space,
on a single disk. The Yahoo! Hadoop cluster that we have used in our ex-
periment consists of over 3500 nodes, each with two quad-core CPUs, 16 GB
RAM and 900 GB of local space. This cluster is used in a utility computing
fashion and thus we do not have exclusive access, meaning that we can not
exploit the full capacity of the cluster and our runtimes at any point might
be (negatively) influenced by the jobs of other users. We can thus only report
actual, but not best possible performance.

In order to compare our approach with existing solutions, we deployed
Virtuoso v7 [23], a top-performing RDF store, on a high-end server: a 4-
socket 2.4GHz Xeon 5870 server (40 cores) with 1TB of main memory and 16
magnetic disks in RAID5, running Red Hat Enterprise Linux 6.0.

We chose two datasets for the evaluation. Firstly, the Berlin SPARQL
benchmark [14], Business Intelligence use-case v3.1 (BSBM-BI). This bench-
mark consists of 8 analytical query patterns from the e-commerce domain. The
choice for this benchmark is based on the scope of this work, namely complex
SPARQL queries from an analytical RDF workload.

Secondly, we also used our engine for some analytical queries on RDF data

78 Querying RDF data with Pig

Query 1B DAS4 1B Y! 10B Y!
1 38 110 77
2 13 23 31
3 17 18 24
4 38 94 54
5 64 190 112
6 48 34 79
7 26 43 46
8 60 119 98

Table 4.1: Execution time (in minutes) of the BSBM queries on 1B data on
the DAS-4 and Yahoo! cluster

that Yahoo! has crawled from the Web. This data is a collection of publicly
available information on the Web encoded or translated in RDF. The dataset
that we used consists of about 26 billion triples that correspond to about 3.5
terabytes of raw data (328 gigabytes compressed).

4.2.1 Experiments

In our evaluation, we measured:

− The performance of our approach for large datasets. To this end, we
launched and recorded the execution time of all the queries on BSBM
datasets of 1 and 10 billion triples.

− The effectiveness of our dynamic optimization technique. To this pur-
pose, we measured the cost of this process and what is its effect on the
overall performance.

− The load-balancing properties of our system. To this end, we have per-
formed a high-level evaluation of the entire querying process in terms of
load balancing, and we have further focused on the performance of the
skew-resistant join, which explicitly addresses load-balancing issues.

General performance

We have launched all 8 BSBM queries on 1 billion triples on both clusters and
on 10 billion triples using only the Yahoo! cluster. The parameters used to
construct them are reported in Appendix B.2.

4.2 Evaluation 79

Query Cold runtime in sec. Warm runtime in sec.
1 226 (4m) 108 (2m)
2 41 15
3 1740 (29m) 1445 (24m)
4 3126 (52m) 3055 (50m)
5 702 (11m) 319 (5m)
6 6 0.06
7 50 0.09
8 2398 (40m) 2182 (36m)

Table 4.2: Runtime of the BSBM queries using Virtuoso

In Table 4.1 we report the obtained runtimes. We make the following
observations: First of all, the fastest queries (queries 2 and 3) have a runtime
of a bit less than 20 minutes on the DAS-4 cluster. The slowest is query 5
that has a runtime of about one hour. For the 1B-triple dataset, the execution
times on the Yahoo! cluster are significantly higher than those on the DAS-4
cluster. This is due to the fact that the Yahoo! cluster is shared with other
users, so, we often need to wait for the jobs of other users to finish in order to
start our execution.

We also note that the runtime does not proportionally increase with the
data size on the Yahoo! cluster: the runtimes for the one and ten billion-
triple datasets are comparable. Such behavior is explained by the fact that
a proportional amount of resources is allocated to the size of the input and
the (significant) overhead to start MapReduce jobs does not increase. Our
approach, combined with the large infrastructure at Yahoo! allows us to scale
to much larger inputs while keeping the runtime fairly constant.

To verify the performance on a real-world scenario and on messy data, we
have launched three non-selective SPARQL queries over an RDF web crawl of
Yahoo!. The queries are reported in Appendix B.1. The first query is used for
identifying “characteristic sets” [57]: frequently co-occurring properties with
a subject. The second query identifies all the properties used in the dataset
and sorts them according to their frequency. The third query identifies the
classes with the most instances. These queries are typical of an exploratory
ETL workload on messy data, aimed to create a basic understanding of the
structure and interesting properties of a web-crawled dataset.

From the point of view of the computation, the first two queries have non-
bound properties and the last one has a very non-selective property (rdf:type).
Therefore they will touch the entire dataset, including problematic proper-

80 Querying RDF data with Pig

Query Cost input Cost dyn. Final query
extraction optimizer execution

1 358 (6m) 732 (12m) 1183 (19m)
2 262 (4m) n.a. 545 (9m)
3 346 (6m) n.a. 718 (12m)
4 382 (6m) 881 (15m) 1015 (17m)
5 457 (7m) 2043 (34m) 1401 (23m)
6 492 (8m) 865 (14m) 1510 (25m)
7 317 (5m) 377 (6m) 843 (14m)
8 487 (8m) 1514 (25m) 1622 (27m)

Table 4.3: Breakdown of query runtimes (in seconds) on 1B BSBM data

ties that cause skew problems. The runtime of these three queries was of
respectively 1 hour and 21 minutes, 29 minutes and 25 minutes. The first
query required 6 MapReduce jobs to be computed. The second and third each
required 3 jobs.

It is interesting to compare the performance for BSBM against a standard
RDF store (Virtuoso) even if the approaches are radically different. We loaded
10 billion BSBM triples on the platform described previously. This process
took 61 hours (about 2.5 days) and was performed in collaboration with the
Virtuoso development team to ensure that the configuration was optimal.

We executed the 8 BSBM queries used in this evaluation and we report the
results in Table 4.2. For some queries, Virtuoso is many orders of magnitude
faster than our approach (namely, for the simpler queries like queries 1,2, 6
and 7). For the more expensive queries, the difference is less pronounced.
However, this performance comes at the price of a loading time of 61 hours,
necessary to create the database indexes. To load the data and run all the
queries on Virtuoso, the total runtime amounts to 63 hours, while in our
MapReduce approach, it amounts to 8 hours and 40 minutes. Although we can
not generalize this conclusion to other datasets, the loading time of Virtuoso
is not amortized for a single query mix in BSBM-BI.

In this light, the respective advantages of the two systems are in running
many cheap queries for Virtuoso and running a limited number of expensive
queries for our system. Furthermore, our system can exploit existing Hadoop
installations and run concurrently with heterogeneous workloads.

4.2 Evaluation 81

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

m
ax
	
 ru

n(
m
e/
av
g	

ru
n(

m
e	

Query	

Map	
 jobs	

Reduce	
 jobs	

Figure 4.2: Maximum task runtime divided by average task runtime for a
query mix

Dynamic optimizer

As discussed in Section 4.1.1, query execution consists of three phases: (a)
extraction of triple patterns, (b) identifying the best execution plan using
dynamic query optimization and (c) executing the full, optimized, query plan.

In Table 4.3, we summarize the execution time of each of these three phases
for the 8 BSBM queries on the DAS-4 cluster, using the one billion triples
dataset. we observe that extracting the input patterns is an operation that
takes between 4 and 8 minutes, depending on the size of the patterns. Fur-
thermore, the cost of dynamic optimization is significant compared to the to-
tal query execution time and largely depends on the complexity of the query,
although, in our approach, part of the results are calculated during the opti-
mization phase.

Load balancing

As the number of processing nodes increases, load-balancing becomes increas-
ingly important. In this section, we present the results concerning load bal-
ancing properties for our approach.

Due to the synchronization model of MapReduce, it is highly desirable that
there are no tasks that take significantly longer than others. In Figure 4.2,
we present the maximum task execution time, divided by the average task
execution time for all the jobs launched to process a query mix on the DAS-4

82 Querying RDF data with Pig

Skew-­‐resistant	
 Join Standard	
 join Skewed	
 Pig	
 join
7.444407 7444407 7.435536 7435536 14712562 14.712562
7.171898 7171898 7.44526 7445260 15222484 15.222484
6.846509 6846509 7.71953 7719530 15480332 15.480332
8.031175 8031175 6.781385 6781385 14579335 14.579335
8.338536 8338536 6.677068 6677068 15064830 15.06483
7.718776 7718776 8.33958 8339580 15276993 15.276993
6.988908 6988908 9.658339 9658339 14605823 14.605823
6.987234 6987234 7.719273 7719273 15448438 15.448438
7.166306 7166306 6.989345 6989345 15904262 15.904262
7.434722 7434722 6.780244 6780244 16028453 16.028453
6.772644 6772644 9.379523 9379523 15436619 15.436619
6.610677 6610677 9.170394 9170394 15667872 15.667872
6.611979 6611979 7.172604 7172604 15001336 15.001336
7.034329 7034329 7.174411 7174411 15178646 15.178646
6.840467 6840467 6.988282 6988282 15921476 15.921476
9.378686 9378686 6.671456 6671456 15537895 15.537895
8.03298 8032980 6.840754 6840754 15661794 15.661794

7.718393 7718393 6.853333 6853333 15069536 15.069536
7.037779 7037779 8.032342 8032342 15553211 15.553211
8.639919 8639919 6.611304 6611304 15081025 15.081025
8.912407 8912407 6.612637 6612637 14829761 14.829761
8.321148 8321148 7.92703 7927030 15708465 15.708465
6.775556 6775556 9.69276 9692760 16503101 16.503101
6.668647 6668647 7.541059 7541059 15830437 15.830437
7.533555 7533555 9.543576 9543576 15471421 15.471421
9.744701 9744701 9.372974 9372974 16146658 16.146658
9.372421 9372421 6.691908 6691908 15919851 15.919851
8.624926 8624926 8.634754 8634754 16158957 16.158957
9.665113 9665113 8.742813 8742813 16278956 16.278956
9.169475 9169475 9.591875 9591875 16268376 16.268376
9.168914 9168914 9.014395 9014395 16426524 16.426524
9.535133 9535133 9.240234 9240234 16924815 16.924815
6.670845 6670845 9.597329 9597329 17012159 17.012159
6.635968 6635968 9.733461 9733461 17161229 17.161229
6.703297 6703297 7.533915 7533915 16974466 16.974466
7.540321 7540321 7.282981 7282981 16785313 16.785313
8.43968 8439680 9.456818 9456818 16547096 16.547096

8.448404 8448404 12.697658 12697658 16767928 16.767928
7.276617 7276617 10.27742 10277420 17718004 17.718004
9.697108 9697108 8.330576 8330576 17527739 17.527739
8.908008 8908008 9.624898 9624898 17242460 17.24246
9.546406 9546406 10.895828 10895828 17566904 17.566904
6.630042 6630042 10.345621 10345621 17645580 17.64558
6.691389 6691389 8.137103 8137103 17825013 17.825013
7.265595 7265595 10.302287 10302287 17380274 17.380274

0	

20	

40	

60	

80	

100	

120	

140	

#R
ec
or
ds
	
 	
 (
m
ill
io
ns
)	

Reduce	
 tasks	

Skew-­‐resistant	
 Join	

Standard	
 join	

Skewed	
 Pig	
 join	

Figure 4.3: Comparison of load distribution between the skew-resistant join
and the standard Pig join

cluster. The x axis corresponds both to time and the queries that correspond
to each job, the y axis corresponds to the time it took to execute the slowest
task divided by the time it took to execute a task, on average. In a perfectly
load-balanced system, the values in y would be equal to 1. In our system,
besides a single outlier, the slowest tasks generally take less than twice the
average time, indicating that the load balancing of our system is good. A
second observation is that the load imbalance is higher in the reduce jobs.
This is to be expected, considering that, in our system, the map tasks are
typically concerned with partitioning the data (and process data chunks of
equal size), while the reduce tasks process individual partitions.

Data skew becomes increasingly problematic as the number of processing
nodes increases, since it generates unbalance between the workload of each
node [45]. In the set of experiments described in this section, we analyze the
performance of the skew-resistant join that we have introduced in Section 4.1.3
to efficiently execute joins on data with high skew.

To this purpose, we launched an expensive join using the 1 billion BSBM
dataset and we analyzed the performance of the standard and the skew-
resistant join. Our experiments were performed on the DAS-4 cluster, since
we required a dedicated cluster to perform a comparative analysis. Consid-
ering that this platform uses only 32 nodes in total, the effect on the Yahoo!
cluster would have been much more pronounced (since it is several orders of

4.3 Related Work 83

magnitude bigger).
We launched a join that used the predicate of the triples as a key; namely,

we have performed a join of pattern (?s ?p ?o) with pattern (?p ?p1?o1). Such
joins are common in graph analysis, dataset characterization and reasoning
workloads (e.g. RDFS rules 2-3 and 7).

The runtime using the classical join was of about 1 hour and 29 minutes.
On the other side, the runtime using the skew-resistant join was of about 57
minutes. Therefore, such a join has a consistent impact on the performance,
in case there is significant skew in the data. The impact is even higher if
we consider that the skew-resistant join requires 21 jobs to finish while the
classical job can be encoded using a single MapReduce job.

The reason behind such increase of performance lies in the way the join is
performed. With the skew-resistant join, all the joins between keys that are
popular in the two sides are performed using a replicated join, which is efficient
because it does not involve communication between the nodes. On the other
hand, if we use the classical method provided by Pig all the computation
is performed in the reduce phase and this is deleterious if there is a large
difference between the cardinalities of the join. In Figure 4.3 we report the
number of records received in input in the reduce phase with both methods.
We see that some reducers receive a much larger number of tuples than others
(these are the ones at the end of the x axis). This implies that some nodes will
need to perform much more computation than others. With the skew-resistant
join, all the joins among popular terms are performed in the map phase and
as result all the reducers receive a similar number of tuples in the input.

We also report reduce task runtimes for the skew-resistant join implemen-
tation in Pig, which calculate a histogram for join keys in order to better
distribute them across the join tasks. Although the size of the cluster is small
enough to ensure an even load-balance using this method, we note that the
standard Pig skewed join sends almost double the number of records to each
reduce task. This is attributed to fact that our approach shifts much of the
load for joining to the Map phase.

4.3 Related Work

We have compared our approach with previous results from three related ar-
eas: (i) MapReduce query processing (ii) adaptive and sampling-based query
optimization and (iii) cluster-aware SPARQL systems.

From the debate on the relative efficiency of parallel relational DBMS query
processing versus MapReduce [75] we know that, if time and resources are

84 Querying RDF data with Pig

available to import and analyze the data, the former kind of systems can
reach higher efficiency, given the data is structured and the query is regular.
Investing into partitioning, index building and statistics gathering makes per-
fect sense in those scenarios where data once imported is re-used many times.
However, there are use cases, such as web-scale data analysis and ETL, where
data preparation time dominates, and there may not be room for amortization.
Our work is intended for situations where the ability of MapReduce clusters
to process huge volumes of raw data with small preprocessing is ideal.

We base our system on the Pig framework [63], which is built on top of
Hadoop, that is a popular open-source MapReduce implementation. Pig is a
high-level programming environment for MapReduce, comparable in abstrac-
tion level to relational algebra, and thus is a suitable target language for the
generation of query plans. Pig comes with a rich library of operators, some of
which are directed at handling situations with data skew [29].

In the relational context, similar efforts towards SQL query processing
over a MapReduce cluster are e.g. Hive [80] and HadoopDB [4]. Both projects
do not provide query optimization when data is raw and unprocessed. Data
import is a necessary first step in HadoopDB and may be costly. In Hive,
query optimization based on statistics is only available if the data has been
analyzed as a prior step.

An interesting approach to on-the-fly query optimization in MapReduce is
Manimal [40] which analyzes MapReduce jobs on-the-fly and tries to enhance
them by inserting compression code and sometimes even on-the-fly indexing
and index lookup steps.

Situations where there is absence of data statistics in the relational context
of query optimization has led to work on sampling and run-time methods. Our
work reuses the Bi-Focal sampling algorithm [28] which came out of the work
in the relational community to use sampling for query result size estimation.
In this work, we have adapted the bi-focal algorithm using the Pig language.

The fuzzy structure in semi-structured data models (such as XML and
RDF) often leads to situations where there are no good statistics. Here, we
often find that certain regularities, which in the relational context are explicit
in the schema, re-surface as data correlations, which are hard to capture in
statistics. We note that the recent work on Characteristic Sets [57] provides
an interesting path forward for the case of RDF. To provide robust query opti-
mization in the face of data correlations and absence of statistics that capture
them, ROX [2, 41] proposes to use run-time sampled query evaluation that dy-
namically observes intermediate result sizes and optimizes the query plan dur-
ing execution. Our work brings some of these ideas to the MapReduce context.
The rigid structure of MapReduce and high latencies in starting new jobs, led

4.4 Conclusions 85

us to adjust the dynamic re-optimization strategies to these constraints. Other
interesting run-time approaches are sideways-information passing [58] in large
RDF joins. These are not easily adaptable to the constraints of MapReduce.

With the ever growing sizes of RDF data available, scalability has been a
primary concern and major RDF systems such as Virtuoso [23], 4store [68],
and BigData [10] have evolved to parallel database architectures targeting
cluster hardware. RDF systems typically employ heavy indexing, going as far
as creating replicated storage in all six permutations of triple order [59, 96],
which makes data import a heavy process. Such choice puts them in a disad-
vantage when the scenario involves processing on huge amounts of raw data.
As an alternative to the parallel database approach, there are several other
projects that process SPARQL queries over MapReduce. PIGSparQL [69] per-
forms a direct mapping of SPARQL to Pig without focusing on optimization.
RAPID+ [67] former provides a limited form of on-the-fly optimization where
look-ahead processing tries to combine multiple subsequent join steps. The
adaptiveness of this approach is however limited compared to our sampling
based run-time query optimization.

4.4 Conclusions

The RDF data model is gaining popularity on the Web and an increasing
amount of data is being released in this format. Large web companies like
Yahoo! are actively crawling RDF data from the Web and need to efficiently
process and query it. There are several challenges in performing scalable RDF
data processing. In this chapter, we address some of them, and to this purpose
we have presented an engine for the processing of complex analytic SPARQL
1.1 queries, based on Apache Pig.

More in particular, we have developed: (i) a translation from SPARQL
1.1 to Pig Latin, (ii) a method for runtime join optimization based on a cost
model suitable for MapReduce-based systems, (iii) a method for result set
estimation and join key skew detection, and (iv) a method for skew-resistant
joins written in Pig. We have evaluated our approach on a standard and a
very large Hadoop cluster used at Yahoo! using synthetic benchmark data and
real-world data crawled from the Web.

In our evaluation, we established that our approach can answer complex an-
alytical queries over very large synthetic data (10 Billion triples from BSBM)
and over the largest real-world messy dataset in the literature (26 Billion
triples). We compared our performance against a state-of-the-art relational
database-backed RDF store on a large-memory server, even though the two

86 Querying RDF data with Pig

approaches bear significant differences. While our approach is not competitive
in terms of query response time, our system has the advantage that it does
not require a-priori loading of the data, and thus has far better loading plus
querying performance. Furthermore, our system runs on a shared architec-
ture of thousands of machines, significantly easing deployment and potentially
scaling to even larger volumes of data.

We verified that the load in our system is well-balanced and our skew-
resistant join significantly outperforms the standard join of Pig for skewed key
distributions in the input.

In this work, for the first time, it has been shown that MapReduce is
suited for very large-scale analytical processing of RDF graphs and it is, in
fact, better suited than a traditional RDF store for a setting where a relatively
small number of queries that require a high computation will be posted on a
very large dataset. These queries are typically used in a ETL workload, where
often the user needs to launch expensive queries to extract and transform
very large volumes of data. The computation required by such queries has
motivated our choice of using MapReduce, and by doing that we also gain the
additional advantage that we avoid an expensive preprocessing phase, which
is not necessary in a typical ETL scenario.

We see future work in optimizing our architecture to further reduce the
overhead of the framework. This can be achieved by replacing sequences of
standard Pig operators with specialized operators. Moreover, we can turn to
an approach that adaptively indexes part of the input, so as to reduce the
number of jobs. In many cases, some of the generated MapReduce jobs were
very short and they can be implemented more efficiently without Pig.

Although in this chapter we have presented the algorithm to handle skewed
joins in the context of Pig, we expect that the result is transferable to a general
parallel data-processing framework. Furthermore, we note that parts of the
skew-resistant join can be already calculated during Bi-focal sampling (e.g.
sampling and extracting the popular terms for the input relations). Both
issues merit additional investigation.

Given the significant cost of dynamic optimization in Pig, another direction
for future work is to research techniques to predict the query behavior to
limit or avoid the sampling and pruning phases that trigger the execution of
additional MapReduce jobs.

Summarizing, in this chapter, we have presented a technique with which
technologies like MapReduce and Pig can be efficiently employed for large-
scale SPARQL querying. The presented results are promising and set the lead
for a new viable alternative to traditional RDF stores for executing expensive
analytical queries on large volumes of RDF data.

87

Part II

Reasoning at query time

89

Chapter 5

Hybrid-reasoning

In the previous part we have described a technique to perform forward-chaining
reasoning using the MapReduce programming model. By precomputing all the
inference, such technique enables efficient responses at query time, but at the
cost of an expensive up front closure computation, which needs to be redone
at every update of the knowledge base.

Backward-chaining does not need such an expensive and change-sensitive
precomputation, and is therefore suitable for more frequently changing knowl-
edge bases, but has to perform more computation at query time. In this
chapter we address this last type of reasoning and we present a general hy-
brid algorithm to perform backward-chaining reasoning on very large RDF
datasets. Our method materializes a fixed set of selected queries, before query
time, whilst applying backward chaining during query time. This hybrid ap-
proach is a trade off between a reduction in rule applications at query time
and a small, query independent computation of data before query time. Our
method relies on a backward-chaining algorithm to calculate the inference
which exploits such partial materialization and the parallel computing power
of modern architectures.

In this chapter, we tackle two problems: First we focus on the problem
of determining whether the general hybrid reasoning algorithm we propose is
correct, i.e. it terminates, is sound and complete. We shall argue that the

90 Hybrid-reasoning

correctness is not dependent on a particular rule set, but holds for a generic
rule set that can be expressed in Datalog.

For the evaluation, however, we will apply our method to the OWL RL rule
set, which is the latest standard OWL profile designed to work on a large scale.
We address some crucial challenges that arise with OWL RL and propose a set
of novel optimizations that substantially improve the computation and hence
the execution time.

We have implemented these techniques in an experimental prototype called
QueryPIE, and we have tested the performance using artificial and realistic
datasets of a size between five and ten billion triples. The evaluation shows
that we are able to perform OWL reasoning using one machine equipped with
commodity hardware which keeps the response time often below one second.

The remainder of this chapter is organized as follows: in Section 5.1 we
present at high level the main idea behind hybrid reasoning. The purpose of
this section is to introduce the reader to our problem and to provide a high
level overview of our approach.

In Section 5.2 we will describe the backward-chaining algorithm that is
used within our method to calculate the inference. Section 5.3 formalizes
the precomputation algorithm of hybrid reasoning and proves its correctness.
Next, in Section 5.4, we focus on the execution of the OWL 2 RL/RDF rule set
(for simplicity we will refer to it as the OWL RL rule set) presenting a series
of optimizations to improve the performance on a large input. In Section 5.5
we present an evaluation of our approach using single pattern queries on both
realistic and artificial data. In Section 5.6 we report on related work. Finally,
Section 5.7 concludes and gives some directions for future work.

5.1 Hybrid reasoning: Overview

In principle there are two different approaches to infer answers in a database
with a given ruleset: One is to compute the complete extension of a database
under some given ruleset before query time (the method presented in Chapter 2
is an example of it) and the other is to infer only the necessary entries needed
to yield a complete answer from the ruleset on-demand, i.e. at query time.

The former’s advantage is that querying reduces, after the full materializa-
tion, to a mere lookup in the database and is therefore very fast compared to
the latter approach, where for each answer a proof-tree has to be built.

On the other hand, if the underlying database changes frequently, ex-ante
materialization has a severe disadvantage as the whole extension must be re-
computed with each update. In this case, an on-demand approach has a clear

5.1 Hybrid reasoning: Overview 91

advantage.
The approach presented in this chapter positions itself in between: the

answers for a carefully chosen set of queries are materialized before query time
and added to the database. Answers to queries later posed by the user are
inferred at query time.

Traditionally, each approach has been associated with an algorithmic method
to retrieve the results: Backward chaining was specifically aimed at on-demand
retrieval of answers, only materializing as little information as necessary to
yield a complete set of answers, whilst forward chaining applies the rules of
the given ruleset until the closure is reached.

Since we want to avoid complete materialization of the database, and there-
fore are only interested in specific answers, we use backward chaining in both
cases: we use backward chaining to materialize only the necessary information
for the carefully chosen queries which we then add to the database, and we
use backward chaining to answer the user queries.

To this end, we introduce a backward-chaining algorithm which exploits
parallel computing power and the fact that some triple patterns are pre-
materialized to improve the performance. For example, if one of these pre-
materialized queries is requested at query-time, the backward-chaining algo-
rithm does not need to build the proof-tree, but a lookup suffices. In case
the pre-materialized patterns frequently appear at user query-time, such opti-
mization is particularly effective.

To give an idea on how this works, consider the following:

Example 1. Consider the two following rules from the OWL RL ruleset:

T (a, p1, b) ← T (p, SPO, p1) ∧ T (a, p, b)
T (x, SPO, y) ← T (x, SPO,w) ∧ T (w, SPO, y)

where we use from now on the abbreviation SPO for reasons of space and
a, b, p, p1, x, y, w are variables (a list of all the abbreviations used in this
chapter is contained in Table 5.1).

Assume we want to suppress the unfolding of all atoms of the form T (x, SPO, y),
modulo variable renaming. If we use Datalog to implement these rules in a pro-
gram, then we can replace each atom by some new atom, using an extensional
database predicate (edb)∗, say S. After the substitution, Example 1 would
become:

T (a, p1, b) ← S(p, SPO, p1) ∧ T (a, p, b)
T (x, SPO, y) ← S(x, SPO,w) ∧ S(w, SPO, y)

∗In Datalog, edb predicates are predicates that do not appear in the head of any rule.
Therefore, they can be implemented much more efficiently since they require only a single
lookup in the database.

92 Hybrid-reasoning

Abbreviation Full text
TYPE rdf:type
SCO rdsf:subClassOf
SPO rdsf:subPropertyOf
EQC owl:equivalentClass
EQP owl:equivalentProperty
INV owl:inverseOf
SYM owl:SimmetricProperty
TRANS owl:TransitiveProperty
INTER owl:intersectionOf

Table 5.1: List of abbreviations for common URIs used in this chapter.

Clearly, the two programs in Example 1 do not yield the same answers for
T anymore. To restore this equality we need to calculate all “T (x, SPO, y)”-
triples and add them to the auxiliary relation named S in the database. In
our example this would mean that S contains the transitive closure of all
“T (x, SPO, y)”-triples which are inferable under the ruleset in the database.

Notice that “T (x, SPO, y)”-triples can also be derived with the first rule
if p1 = SPO. Furthermore, if S indeed contains the transitive closure of all
“T (x, SPO, y)”-triples the second rule can be rewritten as T (x, SPO, y) ←
S(x, SPO, y).

Before we formalize this method and show that it is indeed harmless in
the sense that everything which could be inferred under the original pro-
gram can be inferred under the altered program and vice versa, we shall
discuss the backward-chaining algorithm we use and how it exploits the pre-
materialization for an efficient execution. After this, we will formally discuss
the correctness of our method.

5.2 Hybrid Reasoning: Backward-chaining

In the current and following sections, we will use the notation and notions that
come from the Datalog theory, and more in particular from [3, Chapter 12],
to formalize and to prove the correctness of our method.

To ease the understanding of our explanation, we will briefly recall some
well-known notions of Datalog that will be frequently used. To the same
purpose, we will also enrich our explanation with brief examples in order to

5.2 Hybrid Reasoning: Backward-chaining 93

facilitate the comprehension in case the reader is not completely familiar with
the concepts that are being used.

Let I be a generic Datalog database and R be a predicate symbol of arity
n. We denote with RI the n-ary relation named R in I. In a similar fashion
we denote with q(x̄)I the set of all answers to a Datalog query q(x̄) in I.

In our formalization, we denote TP as the immediate consequence operator
of the Datalog program P . An immediate consequence operator is an operator
that maps a database I to the database TP (I), where TP (I) is I extended by
all facts that could be inferred from facts in I under P . We define T 0

P (I) := I
and Tn+1

P = TP ◦ TnP .
With ω we indicate the first infinite limit ordinal and set TωP (I) :=

⋃
n<ω T

n
P (I).

According to [3, Chapter 12], we have P (I) = TωP (I) and in particular that
for every fact ā ∈ RP (I) there must be some n < ω such that ā ∈ RTnP (I).

We will now discuss our backward-chaining algorithm. The purpose of the
backward-chaining algorithm is to derive all possible triples that are part of a
given input query Q, given a database D and a ruleset R.

Traditionally, users interact with RDF datasets using the SPARQL lan-
guage [66] where all the triple patterns that constitute the body of the query
are joined together according to some specific criteria. For the moment, we
do not consider the problem of efficiently joining the RDF data and focus in-
stead on the process of retrieving the triples that are needed for the query.
Therefore, we target our reasoning procedure at atomic queries, e.g.,

(?c1 rdfs:subclassOf ?c1)

where question marks indicate variables.
Generic inference rules like the ones in the OWL RL ruleset can trivially

be rendered into a positive Datalog program as already witnessed in Example
1. The algorithm that we present is inspired by the well-known algorithm
QSQ (Query-subquery) that was first introduced in 1986 which generalizes the
SLD-resolution technique [88] by applying it to sets of tuples instead of single
ones. The variations that we introduce are meant to exploit the computational
parallelism that is possible to obtain by using modern architectures.

The QSQ algorithm recursively rewrites the initial query into many sub-
queries until no more rewritings can be performed and the subqueries can only
be evaluated against the knowledge base.

Example 2. For example, suppose that our initial query is

T (x, rdf : type, Person)

and that we have a generic database D and the OWL RL ruleset as R.
Initially, the algorithm will determine which rules can produce a derivation

94 Hybrid-reasoning

T(x,rdf:type,Person)

Rule: cax-sco

T(s,rdf:type,x)T(x,rdfs:subClassOf
,Person)

...

T(x,rdfs:subProperty
Of,rdf:type)

Rule: prp-spo1

T(a,x,Person)

... Rule: prp-symp...

T(Person,x,a) T(x,rdf:type,owl:Sym
metricProperty)

Figure 5.1: Example of a proof tree using the OWL RL rules and with the
input query T (x, rdf : type, Person)

that is part of the input query. For example, it could apply the subclass and
subproperties inheritance rules (cax-sco and prp-spo1 in the OWL RL rule-
set). After it has determined them, it will move to the body of the rules and
proceed evaluating them. In case these subqueries will produce some results,
the algorithm will execute the rules and return the answers to the upper level.

With this process, we create a tree that has the original query as root and
the rules and subqueries that might contribute to derive some answers as the
internal nodes. This tree is normally referred as proof tree because it represents
all the derivation steps that are taken to derive answers of our initial query
starting from some existing facts. In Figure 5.1 we report an example of such
a tree for our example query.

An important problem of backward-chaining algorithms concerns the ex-
ecution of recursive rules. Recursive rules and more in general cycles in the
proof tree are an important threat since they could create loops in the com-
putation that the algorithm must handle.

The QSQ algorithm guarantees termination even in presence of recursive
rules by memorizing in a global data structure all the subqueries already eval-
uated and avoiding to make a recursive call with a query if this was already
previously done. This means that eventual derivations that require the evalu-
ation of the same query more times cannot be inferred because the algorithm

5.2 Hybrid Reasoning: Backward-chaining 95

will stop the recursion after one application.
To solve this issue, the algorithm repeats the execution of the query until

fix closure (all derivations are produced). This operation is performed at every
recursive call, to ensure that all the bindings for each subquery in the proof
tree are correctly retrieved.

It has been proved that the QSQ algorithm is sound and complete [89].
Because of this, we are ensured that with this methodology no derivation will
be missed.

The original version of this algorithm is hard to parallelize because it re-
quires a sequential execution to build the proof tree with a depth-first strategy
and it exploits the access to a global data structure to remember all the pre-
viously derived queries. Therefore, its execution is unable to take advantage
of modern multi-core architecture or clusters of several independent nodes.

Because of this, in the next section we will present an adaptation of this
algorithm to our specific use case so that it can be more easily parallelized
and show that the fundamental properties of termination and completeness
are still valid. After this, in Section 5.2.2, we will describe how we can exploit
the precomputation of some queries to increase the performance of backward-
chaining.

5.2.1 Our approach

We introduced two key differences to improve the parallelization of the com-
putation:

− Instead of constructing the proof tree sequentially using a depth-first
strategy as the original QSQ algorithm does, we do it in parallel by ap-
plying the rules on separate threads and in an asynchronous manner. For
example, if we look back at Figure 5.1, the execution of rules cax-sco

and prp-spo1 is performed concurrently by different threads. This ex-
ecution strategy makes the implementation and the maintenance of the
global data structure, used for the caching of previous queries, difficult
and inefficient.We hence choose to replace this mechanism to only re-
member which queries where already executed on the single paths of the
tree. While such a choice might lead to some duplicate answers because
the same queries can be repeated more times, it allows the computation
to be performed in parallel limiting the usage of expensive synchroniza-
tion mechanisms;

− Because the proof tree is built in parallel, ensuring completeness by hav-
ing a loop at every recursive call is inefficient since the same query can

96 Hybrid-reasoning

appear multiple times on different parts of the tree. Therefore, we re-
place it with a global loop that is performed only at the root level of the
tree and storing at every iteration all the intermediate derivations.

We report the algorithm using pseudocode in Algorithm 12. In the pseu-
docode, we use the relation v to define whether one query is more specific than
another. In this case, all the results of the more specific query are contained
in the answer set of the most generic one.

More formally, we can define it as follows:

Let t̄ := (t1, . . . tn) and t̄′ := (t′1, . . . t
′
n) be tuples with ti, t

′
i ∈ TERM, i.e.

each component is either a variable or a constant. Then t̄ is an instance of t̄′,
t̄ v t̄′, if there is a substitution σ : TERM −→ TERM such that σ(c) = c for
each constant c and (σ(t′1), . . . σ(t′n)) = (t1, . . . , tn).

Additionally, if R(t̄) and R(t̄′) are atoms we define R(t̄) v R(t̄′) iff t̄ v t̄′.

Example 3. (x,TYPE ,SYM) v (x,TYPE , y) where x, y are variables and
TYPE and SYM are the abbreviation in Table 5.1.

Also (x,TYPE , y) v (y,TYPE , x).

If R(t̄) v R′(t̄′) and R′(t̄′) v R(t̄) then R(t̄) equals R′(t̄′) up to variable
renaming.

The procedure main is the main function used to invoke the backward-
chaining procedure for a given atomic query Q. It returns the derived answers
for the input query. The procedure consists of a loop in which the recur-
sive function infer is invoked with the input query. This function returns all
the derived answers for Q that were calculated by applying the rules using
backward-chaining (line 5) and all the intermediate answers that were inferred
in the process, saved in the global variable Tmp. In each loop-pass the latest
results in Tmp and New are checked against the accumulated answers of the
previous runs in Mat and Database. If nothing new could be derived the loop
terminates.

After this loop has terminated, the algorithm returns New (line 7) which
contains after the last loop-pass all answers to the input query (cf. line 13)
and the results.

The function infer is the core of the backward-chaining algorithm. Using
the function lookup, it first retrieves for the formal parameter Q all answers
which are facts in the database or were previously derived (line 13). After this,
it determines the rules that can be applied to derive new answers for Q (lines
14–15) and calculates the substitution θ to unify the head of the applicable rule
with the query Q (line 16). It proceeds with evaluating the body of the rule

5.2 Hybrid Reasoning: Backward-chaining 97

Algorithm 12 Backward-chaining algorithm:
Database and RuleSet are global constants, where Database is a finite set of
facts and RuleSet is a Datalog program. Tmp and Mat are global variables,
where Mat stores results of the previous materialization round and Tmp stores
the results of the current round. The parameter Q represents an input pattern.
Both functions main and infer return a set of triples, whilst the function
lookup returns a set of substitutions. θε is the empty substitution. Notice
that we say Q ∈ PrevQueries iff there is Q′ ∈ PrevQueries s.t. Q v Q′ and
Q′ v Q

1 function main(Q)
2 New, Tmp, Mat := ∅
3 repeat
4 Mat := Mat ∪ New ∪ Tmp
5 New := infer(Q, ∅)
6 until New ∪ Tmp ⊆ Mat ∪ Database
7 return New
8 end function
9

10 function infer(Q, PrevQueries)
11
12 //This cycle is executed in parallel
13 all_subst := lookup(Q,Database ∪ Mat)
14 for (∀ r ∈ RuleSet s.t. Q is unifiable
15 with r.HEAD and Q /∈ PrevQueries)
16 θh := MGU(Q,r.HEAD)
17 subst := {θε}
18 for ∀ p ∈ r.BODY
19 tuples := infer(θh(p),PrevQueries ∪ Q)
20 Tmp := Tmp ∪ tuples
21 subst := subst on lookup(θh(p),tuples)
22 end for
23 all_subst := all_subst ∪ subst
24 end for
25
26 return

⋃
θ∈all subst θ(Q)

27
28 end function

(lines 16–23) storing in tuples and Tmp the retrieved answers (lines 19–20),
and performing the joins necessary according to the rule body (line 21).

The algorithm copies all the substitutions that were derived by applying
the rules into the variable all subst and constructs a set of answers using these
substitutions θ (line 26). This set is then returned to the function caller. After
the whole recursion tree has been explored exhaustively, infer returns control
to the function main, where the derived answers are copied into the variable
New. The process is repeated until the closure is reached.

98 Hybrid-reasoning

To help the understanding of this algorithm and more in particular of the
function infer, consider the following example:

Example 4. Suppose that we have a program that consists of a single rule:

r := T (a, p1, b) ← T (p, SPO, p1) ∧ T (a, p, b)

and the input query is Q := (x, TY PE, y) where x and y are variables.

At the beginning, the function main will pass the query Q to the function
infer, which will look for all the rules with an head that is unifiable with Q
(lines 14–15). In our example, only rule r satisfies this condition, and the
program calculates the MGU θh (line 16). An example of such MGU could be
θh := {a/x, p1/TY PE, b/y}

Then, for each literal in the body of the rule, the algorithm unifies the
atoms in the body with the initial query using the MGU θh and retrieves the
triples invoking the function infer. In our example, the first query would be
(p, SPO, TY PE), and the results would be stored in the variable subst. Then,
the algorithm will launch the execute the second query (a, p, b) (notice however
that in this case the implementation is aware of all the possible p). After this,
the results will be joined with the previous ones (line 21), and the triples will be
returned to the function main, which will repeat the execution until all triples
are calculated.

We will now discuss the correctness of our algorithm, which are termina-
tion, soundness and completeness.

Termination.

It is easy to verify that the backward-chaining algorithm in Algorithm 12
always terminates. The only two sources for not-termination are (i) the loop
in lines 3–6 and (ii) the recursive call in line 19. The first loop will continue
until neither New nor Tmp will contain new answers. This happens latest
when every relation is equal to the cartesian product of its arity over the
domain of the database, hence within finitely many steps.

The recursive call in line 19 will be fired only if there is no Q′ in the set
PrevQueries (see condition in line 15) such that Q v Q′ and Q′ v Q (cf.
page 96), meaning that Q equals Q′ up to variable renaming. However, for
similar reasons as before there are, up to variable renaming, only finitely many
different atomic queries over the domain of the database and so the recursion
will terminate.

5.2 Hybrid Reasoning: Backward-chaining 99

Soundness.

The soundness is immediate, as new facts can only be derived through rule-
application in the for-loop beginning in line 14. Hence, if R(a1, . . . , an) is a
fact derived by the function infer, R(a1, . . . , an) is a fact in P (I), the least fix-
point model for the Datalog program P and the database I. Hence Algorithm
12 is sound.

Completeness.

In order to show the completeness of Algorithm 12, we prove Proposition 2,
which holds in particular for all answers to Q derived under a given ruleset
RuleSet and a database Database. We first show

Proposition 1. Let Q be a query for function main and R(a1, . . . , an) a fact,
which appears in the proof-tree of some fact derived from Q under RuleSet in
Database. Then there is some subsequent non-blocked query Qn appearing in
the computation of infer(Q, ∅), such that R(a1, . . . , an) is an answer to Qn
derived under RuleSet in Database.

Proof. We have to show, that there is a sequence of queries Q0, . . . , Qn such
that

1. Q = Q0 and R(a1, . . . , an) unifies with Qn

2. for each i ∈ {0, . . . , n} there is a rule such that Qi unifies with the head
of some rule r ∈ ruleSet and Qi+1 unifies with some body-atom of r,

3. no query is blocked, i.e. there is no subsequence Qi . . . Qk with 0 ≤ i <
k ≤ n such that Qi is up to variable renaming equal to Qk (Qi v Qk
and Qk v Qi).

In this case infer(Q,Ruleset, ∅) will eventually produce the query Qn (cf.
lines 14-24, of Algorithm 12).

Let Q(b1, . . . , bm) be the fact which unifies with the input query Q in
which proof-tree R(a1, . . . , an) appears. Then there is a sequence of rule ap-
plications r0, . . . , rn such that Q(b1, . . . , bm) unifies with the head of r0, for
all i ∈ {1, . . . , n} some body-atom bi,ki of ri unifies with the head of ri+1 and
R(a1, . . . , an) unifies with some body-atom bn,` of rn.

Since Q(b1, . . . , bm) was an answer to Q, they unify and so Q unifies
with the head of r0 yielding θ0 := MGU(Q, r0). For all i ∈ {1, . . . , n} the
body-atom bi,ki of ri unifies with the head hi+1 of ri+1 yielding θi+1 :=

100 Hybrid-reasoning

MGU(Qi, hi+1) where Qi := θi(bi,ki) so that we finally reach the body atom
bn,` of rn where Qn = θn(bn,`) is the query which unifies with R(a1, . . . , an).

We hence obtain a sequence Q0 . . . Qn satisfying items 1 and 2. We shall
show that for every sequence satisfying items 1 and 2 there is a sequence
Q′0, . . . , Q

′
m satisfying items 1–3:

The claim is clear, if the sequence is of length 1, i.e. n = 0 : Q0 is never
blocked. Let Q0 . . . Qn be a sequence of length n+ 1 with Qi equals Qk up to
variable renaming where 0 ≤ i < k ≤ n. Then the head of rk+1 unifies with
the query Qi. The sequence Q0, . . . , Qi, Qk+1 . . . Qn is properly shorter than
Q0 . . . Qn and satisfies items 1–2. The induction hypothesis yields a sequence
Q′0, . . . , Q

′
m which satisfies items 1–3.

Proposition 2. Let Q be an input query for function main and R(a1, . . . , ak)
a fact, which appears in the proof-tree of some fact derived from Q under
RuleSet in Database. Then there is a repeat-loop pass from which onwards
R(a1, . . . , ak) is returned by every query Qn which unifies with R(a1, . . . , ak).

Proof. We prove by induction upon n < ω, that the fact R(a1, . . . , ak) is
yielded in at most n repeat-loop passes, if the height of the minimal proof tree
for R(a1, . . . , ak) is equal to n.

Proposition 1 shows that infer(Q, ∅) produces an unblocked query Qn such
that R(a1, . . . , ak) unifies with Qn.

If the proof tree is of height 0, then R(a1, . . . , ak) is a fact in Database
and infer will always produce this fact in the look-up of line 13 which will be
returned (cf. line 26) by infer for all repeat-loop passes.

Assume the proof tree is of height > 0. Then there is a rule r : R(t̄) ←
R1(t̄1) ∧ . . . ∧ Rm(t̄m) and a variable assignment β such that R(β(t̄)) =
R(a1, . . . ak) and for each i ∈ {1, . . . ,m} the fact Ri(β(t̄i)) has a proof tree of
height at most n under RuleSet in Database.

The head h of r unifies with R(a1, . . . , ak). Let θ := MGU(Qn, h) then
each Ri(β(t̄i)) unifies with Q′i := Ri(θ(t̄i)). Since Qn is not blocked, every Q′i
is a subsequent query of Qn.

By the induction hypothesis, for all i ∈ {1, . . . , n}, every Q′i occurring in
the computation yields Ri(β(t̄i)) after at most n repeat-loop passes. Hence
R(a1, . . . , an) is returned by this particular Qn at the very latest in the n-
th repeat-loop pass and eventually added to Mat (cf. line 4) so that every
subsequent query that unifies with R(a1, . . . , an) will return this fact as look-
up in line 13.

5.2 Hybrid Reasoning: Backward-chaining 101

By proving Proposition 2, we have shown that Algorithm 12 is complete
in a way that given a generic ruleset and database, the algorithm is able to
derive all possible conclusions that can be derived. However, in our approach
this algorithm is invoked with a ruleset that is different from the one that
should be used in first place. Therefore, we still need to prove that our entire
approach is complete in a sense that an execution of this algorithm with the
modified rule set retrieves the same results than an execution that uses the
original ruleset (provided that a prematerialization is performed beforehand).
This issue will be discussed in Section 5.3.

In the following section, we will conclude our discussion of our backward-
chaining algorithm by describing how a generic set of the precalculated pred-
icates can be used in the implementation to speed up the performance of
reasoning at query time.

5.2.2 Exploiting the precomputation for efficient execu-
tion.

In the previous section, we made no difference in the description of our backward-
chaining algorithm between subqueries that are precomputed or not. However,
the pre-materialization of a selection of queries allows us to substantially im-
prove the implementation and performance of backward-chaining performance
by exploiting the fact that these queries can be retrieved with a single lookup.

In our implementation, these queries are maintained in memory so that the
joins required by the rules can be efficiently executed. Also, the availability of
the pre-materialized queries in memory allows us to implement a very efficient
information passing strategy to reduce the size of the proof tree by identifying
beforehand whether a rule can contribute to derive facts for a given query.

In fact, the pre-materialization can be used to determine early failures:
Emptyness for queries which are subsumed by the pre-materialized queries
can be cheaply derived since a lookup suffices. Therefore, when scheduling
the derivation of rule body atoms, we give priority to those body atoms that
potentially match these pre-materialized queries so that if these “cheap” body
atoms do not yield any facts, the rule will not apply, and we can avoid the
computation of the more expensive body atoms of the rule for which further
reasoning would have been required.

To better illustrate this concept, we proceed with an example. Suppose
we have the proof tree described in Figure 5.1. In this case, the reasoner can
potentially apply rule prp-symp (concerning symmetric properties in OWL)
to derive some triples that are part of the second antecedent of rule prp-spo1.

102 Hybrid-reasoning

However, in this case, Rule prp-symp will fire only if some of the subjects
(i.e. the first component) of the triples part of T(x, SPO, TYPE) will also
be the subject of T(x, TYPE, SYM). Since both patterns are precalculated,
we know beforehand all the possible ’x’, and therefore we can immediately
perform an intersection between the two sets to see whether this is actually
the case. If there is an intersection, then the reasoner proceeds executing rule
prp-symp, otherwise it can skip its execution since it will never fire.

It is very unlikely that the same property appears in all the terminolog-
ical patterns, therefore an information passing strategy that is based on the
precalculated triple patterns is very effective in significantly reducing the tree
size and hence improve the performance.

In the following section, we will focus on the prematerialization phase,
which purpose is to calculate the results for these subqueries in order to main-
tain our approach complete.

5.3 Hybrid Reasoning: Pre-Materialization

Before the user can query the knowledge base, our approach relies on a pre-
materialization phase where we calculate some subqueries so that during query
time our backward-chaining algorithm is able to infer the entire derivation. We
first formalize and discuss the pre-materialization algorithm and then we will
show that suppressing the evaluation of pre-materialized subqueries leads to
the same query answers that can be inferred with the original Database and
the original program.

5.3.1 Pre-Materialization algorithm

Let I be a database and P the program with a list L of atomic queries that
are selected for pre-materialization.

We report the pre-materialization algorithm in Algorithm 13. In a first
step (lines 1–3), the database is extended with auxiliary relations named SQ for
Q ∈ L. Each rule of the program P is rewritten (lines 5–12) by replacing every
body atom Ri(t̄i) with the query SQ(t̄i) if Ri(t̄i) v Q, i.e. if the “answers”
to Ri(t̄i) are also yielded by Q. The new rule thus obtained is stored in a
new program P ′. In case the rule p contains no body atoms that need to be
replaced, p is stored in P ′ as well.

In each repeat-loop pass (cf. lines 15–24), I is extended in an external step
(lines 17–19) with all answers for Q ∈ L, which are stored in the auxiliary re-
lation SI

Q. Since this is repeated between each derivation until no new answers

5.3 Hybrid Reasoning: Pre-Materialization 103

Algorithm 13 Overall algorithm of the precomputation procedure: L is a con-
stant containing all queries that were selected for pre-materialization, RuleSet
is a constant containing a program P and Database represents I.

1 for every Q ∈ L
2 introduce a new predicate symbol SQ to Database
3 end for
4
5 for every rule p : R0(t̄0)← R1(t̄1) ∧ . . . ∧ Rn(t̄n) in RuleSet
6 for every Q ∈ L
7 if Ri(t̄i) v Q then
8 replace Ri(t̄i) in p with SQ(t̄i)
9 end if

10 end for
11 add this (altered) rule to NewRuleSet
12 end for
13
14 Derivation := ∅
15 repeat
16 Database := Database ∪ Derivation
17 for every R(t̄) ∈ L
18 Perform SR(t̄)(t̄)← R(t̄) on Database

19 end for
20
21 for every Q in L
22 Derivation := Derivation ∪ main(Q) using NewRuleset as program on Database
23 end for
24 until Derivation ⊆ Database

for any Q ∈ L are yielded, this is equivalent to adding SQ(t̄)← R(t̄) for each
R(t̄) with Q = R(t̄) to P ′ directly†. This makes the procedure complete in the
sense, that after termination of this algorithm SQ contains all answers for the
query Q in the full materialization of Database under Ruleset.

Example 5. Take the altered program from Example 1 and add the appropriate
SQ(Q)← T (Q) to it. In this case we obtain

T (a, p1, b) ← S(p, SPO, p1) ∧ T (a, p, b)
T (x, SPO, y) ← S(x, SPO,w) ∧ S(w, SPO, y)
S(x, SPO, y) ← T (x, SPO, y)

It is trivially clear, that this program yields for every Database exactly the same
results for T (x, SPO, y) as the original program

T (a, p1, b) ← T (p, SPO, p1) ∧ T (a, p, b)
T (x, SPO, y) ← T (x, SPO,w) ∧ T (w, SPO, y)

†Formally, such rule would violate the Datalog condition that edb predicates do not
appear in the head of rules. However, such violation in not influent for the purpose of our
explanation.

104 Hybrid-reasoning

Algorithm 13 terminates and is sound in the sense that after it has termi-
nated, SR(t̄)(a1, . . . , an) is in I whenever R(a1, . . . , an) is an answer to R(t̄) in
the least fix-point model P (I) of P over I.

We consider the Algorithm 13 as complete if, after it has terminated, the
auxiliary relations that we introduced contain all the triples that can be derived
by launching the corresponding query with the original database I and ruleset
(P). More formally, this can be expressed as in the following proposition:

Proposition 3. Algorithm 13 is complete in the sense that for the database I0

which we obtain after Algorithm 13 has terminated SI0

Q ⊇ QP (I) for all Q ∈ L,
i.e. every answer that could be derived from Q under P in I is contained in
SI0

Q .

Proof. In order to proof the validity of this proposition, we assume for the
sake of contradiction that Algorithm 13 were not complete: this means that
no new element could be derived in line 22 from the current state of the
database I0 using the program P ′ (defined as NewRuleset in the pseudocode)
but for some Q ∈ L, main(Q) could derive another yet unknown fact from
I0 using the original program P . Let therefore R(a1, . . . an) be the first yet
underived answer for any Q ∈ L which is derived under the original program
P .

Line 18 guarantees that all SI0

Q = QI0 and so program P ′ is at this stage
indistinguishable from P . Hence main(Q) must derive the fact R(a1, . . . an)
under P ′, as well. A contradiction! Since SI0

Q never shrinks during the pre-
materialization process, Algorithm 13 is complete.

5.3.2 Reasoning with Pre-Materialized Predicates

In the previous section we have described the pre-materialization algorithm
and demonstrated that it is able to calculate all the derivations to some chosen
subqueries and store the results in some edb relations.

In order to verify the correctness of our approach, we still need to demon-
strate that the procedure of replacing body atoms with auxiliary predicates
that contain the full materialization of the body atom w.r.t. a given database,
yields the same full materialization of the database as under the original pro-
gram. The claim will be shown in all its generality explaining on the way, how
the theoretical setting we draw up is connected to our specific case.

Let P be an arbitrary Datalog program and I a database. We assume that
I has already been enriched with the results of the pre-materialization.

5.3 Hybrid Reasoning: Pre-Materialization 105

As an example, assume the binary relation SI contains all answer tuples
of the query

query(x, y)← T (x, SPO, y).

base.
under the program P .

From an abstract point of view we can define S as an extensional database
predicate (edb) of P , i.e. it is not altered by P so that the interpretation SI of
S under I equals the interpretation SP (I) of S under the least fix-point model
P (I) of P over I.

Since S is an edb and therefore does not appear in the head of any rule
of P , S cannot be unfolded and so the evaluation of S during the backward
chaining process is reduced to a mere look-up in the database.

Such a replacement in the original program is harmless only if I has been
adequately enriched. Thus, the question arises which abstract conditions must
be satisfied to allow such a replacement: In essence, we want that a rule fires
under “almost the same” variable assignment as its replacement, which we
formalize in the following two paragraphs.

Assume R0, . . . , Rn are predicates of the program P . Let R(t̄0)← R1(t̄1)∧
. . . ∧Rn(t̄n) be a rule in P . The t̄i = (ti,1, . . . ti,mi) represent tuples of terms,
where each term is either a variable or an element of the domain in I and mi

equals to the arity of Ri for all i ∈ {1, . . . , n}.
We define two queries, one being the body of the rule and one being the

body of the rule where one body atom Ri(t̄i) is replaced by S: Let z̄ :=
t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n, i.e. the concatenation of all tuples except t̄i and let
t̄ be some arbitrary tuple.

q0(z̄)← R1(t̄1) ∧ . . . ∧Ri(t̄i)∧ . . . ∧Rn(t̄n)
q1(z̄)← R1(t̄1) ∧ . . . ∧ S(t̄) ∧ . . . ∧Rn(t̄n)

(∗)

Now, the rule and its replacement fire under almost the same variable

assignment if q
P (I)
0 = q

P (I)
1 , i.e. q0 and q1 yield the same answers under P

in I. We see, that it is “almost the same” variable assignment, as we do
not require variable assignments to coincide on t̄i and t̄. In this way we do

not require, e.g., SI = R
P (I)
i . S is merely required to contain the necessary

information. This is important, if we want to apply the substitution to rdf-
triples, where we lack distinguished predicate names:

Example 6. Since there is only one generic predicate symbol T , requiring
SI = TP (I) would mean that S contains the complete materialization of I
under P which would render our approach obsolete.

106 Hybrid-reasoning

Also notice, that it is not sufficient to merely require q0(t̄0)P (I) = q1(t̄0)P (I),
i.e. that both queries yield the same answer tuples t̄0 under P (I), as the fol-
lowing example shows.

Example 7. Let the program P which computes the transitive closure of R0

in R1 consist of the two rules:

R1(x, z) ← R1(x, y) ∧R0(y, z)
R1(x, y) ← R0(x, y)

Consider database I with RI
0 := {(a, b), (b, c), (b, b), (c, c)}. In the least fix-

point model P (I) of P we expect R
P (I)
1 = {(a, b), (b, c), (a, c), (b, b), (c, c)}. Let

S have the interpretation SI = {(b, b), (c, c)}. Since R
P (I)
1 is the transitive

closure, the following two queries deliver the same answer tuples under P (I):

q0(x, z) ← R1(x, y) ∧R0(y, z)
q1(x, z) ← R1(x, y) ∧ S(y, z)

Yet the program P ′

R1(x, z) ← R1(x, y) ∧ S(y, z)
R1(x, y) ← R0(x, y)

will not compute the transitive closure of R0 in R1 because R
P ′(I)
1 = {(a, b), (b, c),

(b, b), (c, c))}.

We shall now show that substituting a body atom Ri(t̄i) by S(t̄) under
the condition that the queries in (∗) yield the same answer tuples under P (I),
generates the same least fix-point:

Proposition 4. Let P ′ be the program P where the rule
R0(t̄0)← R1(t̄1) ∧ . . . ∧Ri(t̄i) ∧ . . . ∧Rn(t̄n) ∈ P
has, for some tuple t̄ and edb S, been replaced by
R0(t̄0)← R1(t̄1) ∧ . . . ∧ S(t̄) ∧ . . . ∧Rn(t̄n).
Let q0 and q1 be defined as in (∗).

If q
P (I)
0 = q

P (I)
1 then P (I) = P ′(I).

Proof. In order to show the implication we assume q0(z̄)P (I) = q1(z̄)P (I). Let
TP and TP ′ be the immediate consequence operators (mentioned on page 93)
for each program. We show for all k < ω that if Q(a1, . . . am) ∈ T kP (I) then
there is an ` < ω such that Q(a1, . . . am) ∈ T `P ′(I) and vice versa. Since we

5.3 Hybrid Reasoning: Pre-Materialization 107

start out from the same database I we have T 0
P (I) = T 0

P ′(I) which settles the
base case.

Let R be an intensional predicate of P , i.e. it appears in some rule head
in P . If R(a1, . . . am) ∈ T k+1

P (I) then either R(a1, . . . am) ∈ T 0
P (I) and we are

done or there is some rule R(t̄0) ← R1(t̄1) ∧ . . . ∧ Rn(t̄n) and some variable
assignment β such that β(t̄0) = (a1 . . . , am) and Rj(β(t̄j)) ∈ T kP (I) for all
j ∈ {1, . . . , n}.

If R(t̄0) ← R1(t̄1) ∧ . . . ∧ Rn(t̄n) ∈ P ′, i.e. none of its body atoms where
substituted, the induction hypothesis shows for each j ∈ {1, . . . , n} that we can

find `j < ω such that Rj(β(t̄j)) ∈ T
`j
P ′(I). Let `0 := max{1}∪{`j | 1 ≤ j ≤ n}.

Notice, that we add {1} for the case where the rule body was empty. In any
case, we have Rj(β(t̄j)) ∈ T `0P ′(I) for all j ∈ {1, . . . , n}. Since all premises of
this rule are satisfied, there is some ` < ω such that R0(β(t̄0)) ∈ T `P ′(I).

If R(t̄0) ← R1(t̄1) ∧ . . . ∧ Rn(t̄n) /∈ P ′ it is the rule where Ri(t̄i) has been
substituted with S(t̄). For the assignment β we now know β(t̄0 · t̄1 · · · t̄i−1 ·
t̄i+1 · · · t̄n) ∈ q0(z̄)P (I). Since q0(z̄)P (I) = q1(z̄)P (I) we know that there is
some assignment β′, which coincides with β on (t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n) such
that β′(t̄) ∈ SP (I).

Hence Rj(β
′(t̄j)) ∈ T kP (I) for all j ∈ {1, . . . , n} \ {i} and S(β′(t̄)) ∈ T 0

P (I)
since S is an edb predicate. The induction hypothesis yields some `j < ω for

each j ∈ {1, . . . , n}\{i} such that Rj(β
′(t̄j)) ∈ T

`j
P ′(I). Let `0 := max{0}∪{`j |

1 ≤ j ≤ n and j 6= i}, then Rj(β
′(t̄j)) ∈ T `0P ′(I) for all j ∈ {1, . . . , n} \ {i} and

S(β′(t̄)) ∈ T 0
P ′(I). Since all premises of this rule are satisfied, there is some

` < ω such that R0(β′(t̄0)) ∈ T `P ′(I). As β coincides with β′ also on t̄0, i.e.
β′(t̄0) = (a0, . . . , am), we have in particular R(a0, . . . , am) ∈ T `P ′(I).

This shows that for all predicates Q we have QP (I) ⊆ QP ′(I). For the con-
verse we merely show the case of the substituted rule: Assume R(a1, . . . am) ∈
T k+1
P ′ (I) and there is an assignment β′ such that β′(t̄0) = (a1, . . . am) and

Rj(β
′(t̄j)) ∈ T kP ′(I) for all j ∈ {1, . . . , n} \ {i} as well as β′(t̄) ∈ SP ′(I).

The induction hypothesis yields for each j ∈ {1, . . . , n} \ {i} some `j <

ω with Rj(β
′(t̄j)) ∈ T

`j
P (I). Since S is an edb predicate for P , we have

S(β′(t̄)) ∈ T 0
P (I). Hence for `0 := max{0} ∪ {`j | 1 ≤ j ≤ n and j 6= i} we

have Rj(β
′(t̄j)) ∈ T `0P (I) for all j ∈ {1, . . . , n} \ {i} and S(β′(t̄)) ∈ T 0

P (I).

This implies β′(t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n) ∈ q1(z̄)P (I) and since q0(z̄)P (I) =
q1(z̄)P (I) there is an assignment β coinciding on (t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n)
with β′ such that Ri(β(t̄i)) ∈ T j0P (I) for some j0 < ω. Let `1 := max{`0, j0}
then Rj(β

′(t̄j)) ∈ T `1P (I) for all j ∈ {1, . . . , n}. Since all premises of the
rule R0(t̄0) ← R1(t̄1) ∧ . . . ∧ Rn(t̄n) are satisfied, there is some ` < ω such

108 Hybrid-reasoning

that R0(β(t̄0)) ∈ T `P (I), which shows, as β coincides on t0 with β′ that
R(a0, . . . , am) ∈ T `P (I).

Together with QP (I) ⊆ QP
′(I) this shows QP (I) = QP

′(I) for all predicate
names Q and hence that P (I) = P ′(I).

It now becomes clear, how Algorithm 13 and Proposition 4 fit together:
For a given database I and a list of atomic queries L, Algorithm 2 computes
for each Q ∈ L the query answers under the program P , which are stored in
the relation SI

Q. These SQ are edbs for P .
Let now r : R0(t̄0) ← R1(t̄1) ∧ . . . ∧ Rn(t̄n) be a rule in this program and

Q ∈ L an atomic query s.t. Ri(t̄i) v Q, then Q = Ri(t̄) such that t̄i v t̄ by
definition of v. Correctness of Algorithm 13 yields R(t̄i)

P (I) = SQ(t̄i)
P (I) and

hence that q0(z̄)P (I) = q1(z̄)P (I) where z̄ = t̄0 · · · t̄n and

q0(z̄) ← R1(t̄1) ∧ . . . ∧Ri(t̄i) ∧ . . . ∧Rn(t̄n)
q1(z̄) ← R1(t̄1) ∧ . . . ∧ SQ(t̄i) ∧ . . . ∧Rn(t̄n)

Proposition 4 guarantees that the substitution of Ri(t̄i) by SQ(t̄i) in rule r
is harmless w.r.t. I. By applying this argument iteratively, one eventually
obtains a program P ′ in which all pre-computed atoms have been replaced
and which yields the same materialization for I as P .

In the following section we shall apply this rewriting to the OWL RL rule
set.

5.4 Hybrid reasoning for OWL RL

In the previous sections we described the two main components of our method
which consists of the backward-chaining algorithm used to retrieve the infer-
ence and the pre-materialization procedure which ensures the completeness of
our approach.

We will now discuss the implementation of the OWL RL rules using our
approach. The official OWL RL rule set contains 78 rules, for which the reader
is referred to the official document overview [92]. With some selected examples
from [92] we will illustrate some key features of our algorithm.

Initial assumptions. First of all, we exclude some rules from our discussion
and implementation for various reasons. These are:

− All the rules whose purpose is to derive an inconsistency, i.e. rules with
predicate false in the head of the rule. We do not consider them because
our purpose is to derive new triples rather than identify an inconsistency;

5.4 Hybrid reasoning for OWL RL 109

O
W

L
R

L

p
D
∗

R
D
F
S (?X rdfs:subPropertyOf ?Y)

(?X rdfs:subClassOf ?Y)
(?X rdfs:domain ?Y)
(?X rdfs:range ?Y)
(?P rdf:type owl:FunctionalProperty)
(?X owl:allValuesFrom ?Y)
(?P rdf:type
owl:InverseFunctionalProperty)

(?X owl:inverseOf ?Y)
(?P rdf:type owl:TransitiveProperty)
(?X rdf:type owl:Class)
(?P rdf:type owl:SymmetricProperty)
(?X rdf:type owl:Property)
(?X owl:equivalentClass ?Y)
(?X owl:onProperty ?Y)
(?X owl:hasValue ?Y)
(?X owl:equivalentProperty ?Y)
(?X owl:someValuesFrom ?Y)
(?X owl:propertyAxiom ?Y)
(?X owl:hasKey ?Y)
(?X owl:intersectionOf ?Y)
(?X owl:unionOf ?Y)
(?X owl:oneOf ?Y)
(?X owl:maxCard 1)
(?X owl:maxQCar 1)
(?X owl:onClass ?Y)
(?X rdf:type owl:Class)
(?X rdf:type DataTypeProp)
(?X rdf:type ObjTypeProp)

Table 5.2: Triple patterns that are precalculated considering the OWL RL
rules.

− All the rules which have an empty body. These rules cannot be trig-
gered during the unfolding process of backward-chaining. These rules
include the ones who encode the semantics of datatypes, therefore our
implementation does not support datatypes;

− The rules that exploit the owl:sameAs transitivity and symmetry‡. These
rules require a computation that is too expensive to perform at query
time since they can be virtually applied to every single term of the triples.
These rules can be implemented by computing the sameAs closure and
maintaining a consolidation table.§

In our approach we decided to pre-materialize all triple patterns that are
used to retrieve “schema” triples, also referred to as the terminological triples.

‡The list of these rules is reported in Table 4 of [92].
§This procedure is explained in detail in Chapter 2.

110 Hybrid-reasoning

In Table 5.2 we report the list of the patterns that are pre-materialized using
our method described in Section 5.3.

Singling out exactly those triple patterns from Table 5.2 is motivated by
the empirical observation that:

− they appear in many of the OWL rules;

− their answer sets are very small compared to the entire input;

− their answer sets are not as frequently updated as the rest of the data.

These characteristics make the set of inferred schema triples the ideal can-
didate to be pre-materialized. All rules which have a pre-materialized pattern
amongst their body atoms, are substituted replacing the pre-materialized pat-
tern with its corresponding auxiliary relation as justified by Proposition 4.
This affects 25 rules out of 78 and hence reduces reasoning considerably.

After the pre-materialization procedure is completed, each rule which has
a pre-materialized pattern in its head can be reduced to a mere look-up:

Example 8. Consider (scm-sco) from Table 9 in [92]:

T (x, SCO, z)← T (x, SCO, y) ∧ T (y, SCO, z)

can be replaced by Proposition 4

T (x, SCO, z)← Ssco(x, SCO, y) ∧ Ssco(y, SCO, z)
where all answers to T(?c1 SCO ?c2) are contained in SI

sco. Then T (x, SCO, y)
can be replaced by > the constant for true, again using Proposition 4, and
finally obtaining

T (x, SCO, z)← Ssco(x, SCO, z)

This removes a further 30 rules from unfolding.

On the implementation of RDF lists. Some of the inference rules in the
OWL RL rule set use RDF lists to define a variable number of antecedents.
The RDF lists cannot be represented in Datalog in a straightforward way since
they rely on rdf:first and rdf:next triples to represent the elements of the list.
Therefore, they need to be processed differently.

In our implementation, at every step of the pre-materialization procedure,
we launch two additional queries to retrieve all the (inferred and explicit)
rdf:first and rdf:rest triples with the purpose of construct such lists. Once
we have collected them, we perform a join with the other schema triples, and
determine the sequence of elements by repetitively joining the rdf:first and

5.4 Hybrid reasoning for OWL RL 111

rdf:rest triples. After this operation is completed, from the point of view of
the Datalog program RDF lists appear as simple list of elements and are used
according to the rule logics.

5.4.1 Detecting duplicate derivation in OWL RL

Since the OWL RL fragment consists of a large number of rules, there is a
high possibility that the proof tree contains branches that lead to the same
derivation. Detecting and avoiding the execution of these branches is essential
in order to reduce the computation.

After empirical analysis on some example queries we determined that there
are two types of sources in the generation of duplicates. The first comes from
the nature of the ruleset. The second comes from the input data.

First type of duplicates source. The most prominent example of gen-
eration of duplicates of the first type is represented by the symmetric rules
which have the same structure but have the variables positioned at different
locations. We refer with rule names and tables in the following list to the
OWL RL ruleset in [92]:

prp-eqp1 and prp-eqp2 from Table 5
cax-eqc1 and cax-eqc2 from Table 7
prp-inv1 and prp-inv2 from Table 5.

We will now analyze each of these three cases below.

Let SI
eqp be the pre-materialization of the triple pattern T(x, EQP, y). Rules

scm-eqp1 and scm-eqp2 render SI
eqp symmetric. Hence

q(x, p2, y)← T (x, p1, y) ∧ Seqp(p1, EQP, p2)

yields the same results under P (I) as

q(x, p1, y)← T (x, p2, y) ∧ Seqp(p2, EQP, p1)

and Proposition 4 yields that scm-eqp2 can be replaced by scm-eqp1, effec-
tively deleting scm-eqp2 from the ruleset.

Similarly, rules scm-eqc1 and scm-eqc2 render the results of the pre-
materialized query T(x, EQC, y), symmetric.

In contrast, the pre-materialized query T(x, INV, y) is not symmetric. How-
ever, we can first observe that Proposition 4 allows to replace the rules by

T (x, p, y)← T (x, q, y) ∧ Sinv(p, INV, q)
T (x, p, y)← T (x, q, y) ∧ Sinv(q, INV, p)

112 Hybrid-reasoning

which defuses the idb atom T (q, INV, p) into the harmless edb Sinv, for which
SI
inv contains all answers to the query T(x, INV, y). Let this new program be

called P ′. Further, let P ′′ be the program where both rules have been replaced
by

T (x, p, y)← T (x, q, y) ∧ S′inv(p, INV, q)
with S′Iinv being the symmetric closure of SI

inv. It is now not difficult to see,
that every model of P ′ is a model of P ′′ and vice versa. In particular the least
fix-point model of P (I) is equal to the least fix-point model P ′′(I). Hence we
can replace prp-inv1 and prp-inv2 by one rule under the condition that we
pre-materialize the symmetric closure of T(x, INV, y).

Second type of duplicates source. The second type of duplicate genera-
tions comes from the input data which might contain some triples that make
the application of two different rules perfectly equivalent.

We have identified an example of such a case in the Linked Life Dataset,
that is one realistic dataset that we used to evaluate our approach. In this
dataset there is the triple:

T(SCO, TYPE, TRANS)

which states that the subClassOf predicate is transitive.

In this case, during the precomputation phase the query T(a, SCO, b)
will be launched several times, and each time the reasoner will trigger the
application of both the rules scm-sco and prp-trp.

However, since the application of these two rules will lead to the same
derivation, such computation is redundant and inefficient. Therefore, to detect
such cases we can apply a special algorithm when the system is starting up
and it is initializing the ruleset. A complete description of this algorithm is
outside the scope of this chapter and we will simply illustrate the main idea
behind it.

Basically, this algorithm compares each rule with all the others in order
to identify under which conditions the two will produce the same output to
a given query. For example, the rules scm-sco and prp-trp will produce the
same derivation if (i) the input contains the triple T(SCO, TYPE, TRANS)
and if (ii) there is a query with SCO as a predicate.

In order to verify this is the case, the algorithm checks whether the triple
T(SCO, TYPE, TRANS) exists in the input and there is a matching on the
position of the variables in the two rules (if one rule contains more variables
than the other, then the algorithm will substitute the corresponding terms).
If such matching exists, then the two rules are equivalent. In our example,

5.5 Evaluation 113

the algorithm will find out that the rule prp-trp is equivalent to scm-sco if
we replace ?p with SCO. Therefore, if there is an input query with SCO as
predicate, the system will execute only one of the two rules, avoiding in this
way a duplicated derivation.

5.5 Evaluation

We have implemented our approach in a Java prototype that we called QueryPIE
and we evaluated the performance using one machine of the DAS-4 cluster¶,
which is equipped with a dual Intel E5620 quad core CPU of 2.4 GHz, 24 GB
of memory and 2 hard disks of 1 TB each configured in RAID-0 mode.

We used two datasets as input. LUBM [30] which is one of the most
popular benchmarks for OWL reasoning and LLD (Linked Life Data)‖, which
is a curated collection of real-world datasets in the bioinformatics domain.

LUBM allows to generate datasets of different sizes. For our experiments we
generated a dataset of 10 billion triples (which corresponds to the generation
of 80000 LUBM universities). The Linked Life Data dataset consists of about
5 billion triples. Both datasets were compressed using the procedure described
in [87].

We organize this section as follows. First, in Section 5.5.1 we will report
a set of experiments to evaluate the performance of the pre-materialization
phase. Next, in Section 5.5.2 we will focus on the performance of the backward-
chaining approach and analyze its performance on some example queries. Fi-
nally, in Section 5.5.3, we present a more general discussion on the results that
we obtained.

5.5.1 Performance of the pre-materialization algorithm

We launched the pre-materialization algorithm on the two datasets to mea-
sure the reasoning time necessary to perform the partial closure. The results
are reported in the second column of Table 5.3. Our prototype performs joins
between the pre-materialized patterns when it loads the rules in memory, there-
fore, we have also included the startup time along with the query runtimes to
provide a fair estimate of the time requested for the reasoning.

From the results, we notice that the pre-materialization is about three or-
ders of magnitude faster for the LUBM dataset than for LLD. The reason

¶http://www.cs.vu.nl/das4
‖http://www.linkedlifedata.com/

http://www.cs.vu.nl/das4
http://www.linkedlifedata.com/

114 Hybrid-reasoning

Dataset
Reasoning time N.

iterations
N. derived
triplesOur approach Full material-

ization
LUBM 1s 4d4h16m 4 390
LLD 16m 5d10h45m 7 10 millions

Table 5.3: Execution time of the pre-materialization algorithm compared to a
full closure.

Pattern Dataset Query
1 LUBM ?x ?y <http://www.Dept0.../GraduateCourse0>
2 LUBM ?x <lubm:subOrganizationOf> <http://www.University0.edu>
3 LUBM <...GraduateStudent124> <lubm:degreeFrom> <...niversity114>
4 LUBM ?x ?y <http://www.Dept0.../AssistantProfessor0>
5 LUBM ?x <lubm:memberOf> <http://www.Dept0.Universitity0.edu>
6 LUBM ?x <rdf:type> <lubm:Department>
7 LLD ?x ?y <lifeskim:mentions>
8 LLD ?x <lifeskim:mentions> <.../umls/id/C0439994>
9 LLD <.../resource/pubmed/id/15964627> ?x ?y
10 LLD ?x ?y <http://purl.uniprot.org/go/0006952>
11 LLD ?x ?y <http://linkedlifedata.com/resource/umls/id/C0439994>
12 LLD ?x <http://www.biopax.org/.../biopax-level2.owl#NAME> ?y

Table 5.4: List of example queries

behind this difference is that the ontology of LUBM requires much less rea-
soning than the one of LLD in order to be pre-materialized. In fact, in the
first case the pre-materialization algorithm has derived about 390 triples and
needing four iterations to reach a fix point. On LLD the pre-materialization
required 7 iterations and returned about 10 million triples.

We intend to compare the cost of performing the partial closure against
the cost of a full materialization, which is currently considered as the state
of the art in the field of large scale OWL reasoning. However, to the best
of our knowledge there is no approach described in literature which supports
the OWL RL fragment and which is able to scale to the input size that we
consider.

The closest approach we can use for a comparison is the approach that we
presented in Chapter 2 which we used to demonstrate OWL reasoning up to

5.5 Evaluation 115

the pD∗ fragment to a hundred billion triples. Since this approach uses the
MapReduce programming model, an execution on a single machine would be
suboptimal. Therefore, we launched it using eight machines and multiplied
the execution time accordingly to estimate the runtime on one machine (such
estimation is in line with the performance of WebPIE which has shown linear
scalability, as described in section 2.4.4).

The runtime of the complete materialization performed with this method is
reported in the third column of Table 5.3. We notice that in both cases a com-
plete materialization requires between four and five days against the seconds
or minutes required for hybrid reasoning. This comparison clearly illustrates
the advantage of our approach in terms of pre-materialization cost. However,
such advantage comes at a price: while after a complete materialization rea-
soning is no longer needed, in our case we still have to perform some inference
at query time. The impact of this operation on the query-time performance is
analyzed in the next section.

5.5.2 Performance of the reasoning at query time

In order to analyze the performance of reasoning at query time, we launched
some example queries after we computed the closure using our backward-
chaining algorithm to retrieve the results. To this purpose, we selected six
example queries for both the LUBM and LLD datasets and report them in
Table 5.4.

While LUBM provides an official set of queries for benchmarking, unfor-
tunately there is no official set of queries that can be used for benchmarking
the performance on the LLD dataset. Therefore, we took some queries that
are reported in the official page of the LLD dataset and modified them so that
they could trigger different types of reasoning.

These queries were selected according to the following criteria:

− Number of results: We selected queries that return a number of results
that varies from no results to a large set of triples;

− Reasoning complexity: Some queries in our example set require no rea-
soning to be answered, in contrast other queries generate a very large
proof-tree;

− Amount of data processed: In order to answer a query, the system might
need to access and process a large set of data. We selected queries that
read and process a variable amount of data to verify the impact of I/O
on the overall performance.

116 Hybrid-reasoning

Query
Runtime (ms) Processed Triples I/O access
Cold Warm Total Output # lookups MB

1 60.43 6.39 5 5 43 8
2 1099.28 129.31 463 239 12 205
3 49.18 6 3 1 18 5
4 73.06 11.17 37 29 86 8
5 118.71 13.97 1480 719 18 8
6 4026.27 2590.27 1599987 1599987 2 12
7 228.26 214.57 0 0 670 23
8 23.74 6.29 4466 4466 1 4
9 7064.04 609.4 140 128 3540 105
10 2535.38 1103.48 28446 26860 14372 337
11 2613.37 1883.14 8546 4504 15128 64
12 2334.70 2059.20 1187944 1187944 1 10

Table 5.5: Runtime of the queries in Table 5.4 on the LUBM and LLD datasets

We performed a number of experiments to analyze three aspects of the
performance of our algorithm during query time: the absolute response time,
the reduction of the proof-tree, and the overhead induced by reasoning during
query-time. Each of these aspects is analyzed below.

Absolute response time

We report in Table 5.5 the execution time obtained launching the selected
example queries in Table 5.4. In the second and third columns we report both
the cold and warm runtime∗∗. With cold runtime we identify the runtime that
is obtained by launching the query right after the system has started. Since
the data is stored on disk, with the cold runtime we also measure the time
to read the data from disk. On the other side, the warm runtime measures
the average response time of launching the same query thirty more times.
Because during such execution the data is already cached in memory and the
Java VM has already initialized the internal data structures, the warm runtime
is significantly faster than the cold one.

The fourth and fifth column, respectively, report the total number of deriva-
tions that were inferred during the execution of the query, and the number of

∗∗Notice that the reported runtime does not include the time required to compress/de-
compress the numerical terms to their string counterpart.

5.5 Evaluation 117

triples returned to the user.
The sixth and seventh column report the number of data lookups required

to answer the query and the amount of data that is read from disk. These
two numbers are important to estimate the impact of reasoning at query time.
While one query without reasoning requires only one data lookup, in our case
the reasoning algorithm might require to access the database multiple times.
For example, in order to answer query 11 the program had access to the data
indices about 15000 times.

From the results reported in Table 5.5 we can make several considerations.
First, we notice that the cold runtime is in general significantly higher than
the warm runtime between one and two orders of magnitude. This is primarily
due to expensive cost of the I/O access to disk especially because reasoning
requires to read at different locations of the data indices, and therefore the
system is required to read several blocks of the B-Tree from the disk. For
most of the queries, the I/O access dominates the execution time. The worst
case is represented by query 10 where the program reads from disk about
337 MB of data. From these results we conclude that the performance of the
program in case the data is stored on disk is essentially I/O bounded. After
the data is loaded in memory, the execution time drops by about one order of
magnitude on average and the performance becomes CPU bounded.

Another factor that impacts the performance is the number of the inferred
triples that are calculated during the execution of the query. In fact, we
notice that absolute performance is lower in case a large number of triples is
either inferred or retrieved from the database. The behavior is due to the fact
that the algorithm needs to temporarily store these triples as it must consider
them in each repeat-loop pass until the closure is reached. This means that
these triples must be stored and indexed to be retrieved during the following
iterations and the response time consequently increases.

Summarizing our analysis, we make the following conclusions: (i) the run-
time is influenced by several factors among which the most prominent is the
amount of I/O access that is requested to answer the query (this number is pro-
portional to the size of the proof tree) and the number of derivations produced.
(ii) There is a large difference in the runtime observed in our experiments. In
the worst case the absolute runtime is in the range of few seconds, while in the
best cases the performance is in the order of dozens of milliseconds. However,
even in the worst case the system allows an interactive usage since few seconds
are acceptable in most scenarios.

In Section 5.5.2 we will compare such response times with the ones without
reasoning in order to have a better overview of the overall performance and
understand what is the overhead induced by reasoning at query time.

118 Hybrid-reasoning

Query
Leaves proof-tree

Reduction ratio
Without
precomp.

Our approach

1 16 4 4.0
2 2 1 2.0
3 12 3 4.0
5 26 7 3.7

Table 5.6: Estimation of the reduction of the proof tree caused by the pre-
materialization algorithm.

Q.
Only Lookup RDFS pD* OWL RL

No Ins Ins No Ins Ins No Ins Ins No Ins Ins
1 0.81 0.83 1.88 1.79 5.4 6.13 6.39 5.89
2 0.82 1.51 1.56 2.83 128.78 131.05 129.31 138.53
3 0.82 0.83 3.55 2.72 5.50 4.51 6 4.83
4 0.88 0.94 2.01 2.32 10.06 9.48 11.17 10.63
5 1.5 1.61 7.01 4.95 13.58 10.52 13.97 10.8
6 405.42 418.38 2605.68 2630.08 2608.20 2619.17 2590.27 2618.66
7 0.77 0.79 176.19 1.26 203.23 17.93 214.57 16.78
8 1.96 1.89 6.23 6.34 6.39 6.46 6.29 6.36
9 0.84 0.90 262.7 46.53 590.34 277.55 609.4 277.02
10 7.90 7.29 212.57 115.16 903.31 814.95 1103.48 1053.33
11 1.85 1.93 200.55 8.35 1695.73 1468 1883.14 1529.64
12 338.14 337.41 2129.49 2044.34 2055.02 2077.55 2059.2 2062.65

Table 5.7: Runtime (in ms.) of the example queries changing the ruleset.

Reduction of the proof tree

The backward-chaining algorithm and more in general our approach relies
on the pre-materialization of some selected queries which serve a variety of
purposes such as performing efficient sideways information passing or exclud-
ing rules that derive duplicates. Another advantage of performing the pre-
materialization is that it reduces the size of the proof tree during query-time.

In this section, we will evaluate the effective reduction in terms of the
size of the proof tree obtained by avoiding performing inference on the pre-
materialized patterns.

However, since the method presented in this chapter is embedded in the
implementation of our prototype, and since the optimizations introduced are

5.5 Evaluation 119

crucial to its execution, we cannot disable them. To overcome this problem, we
have manually analyzed the execution of the LUBM queries with our prototype
on a much smaller dataset and manually constructed the proof tree without
pre-materialization (note that we excluded queries 4 and 6 since in these cases
reasoning did not contribute to derive new answers). In principle, for each
query, we identified the rules that produce some derivations and for each pre-
materialized query in their body, we added the corresponding branch that
was generated when that query was calculated during the pre-materialization
phase.

We report the results of such analysis in Table 5.6. The last column reports
the obtained reduction ratio and shows that the number of leaves shrinks
between two and four times due to our pre-materialization. The results of this
method of evaluation must be seen as an underestimate, because we could not
deactivate all the optimizations, and therefore in reality the gain is even higher
than the one calculated. Nevertheless, this shows that our pre-calculation
is indeed effective. For a very small cost in both data space and upfront
computation time, we substantially reduce the proof-tree. Apparently, the pre-
materialization precisely captures small amounts of inferences that contribute
substantially to the reasoning costs because they are being used very often.

Overhead of reasoning during query-time

While we are able to significantly reduce the size of the proof-tree and apply
other optimizations to further reduce the computation, we still have to perform
some reasoning during the execution of a query. It is important to evaluate
what the cost for the remaining reasoning is when we compare our approach
to a full-materialization approach (which is currently the de-facto technique
for large scale reasoning), where a large pre-materialization is performed so
that during query time reasoning is avoided altogether.

To this end, we launched a number of experiments activating different types
of reasoning at query time and report the results in Table 5.7.

We proceeded as follows: we first launch the queries, deactivating all rules
at query time, and state their execution time in the first column of the table
(the title “No Ins.” indicates no insertion). We then reissued the queries
activating only the RDFS rules (in the third column), then the pD∗ rules and
finally the OWL RL ones.

The results reported under the “Ins.” columns were calculated differently.
In fact, in the previous experiments the number of retrieved results for a spe-
cific query might differ because we changed the rule set and this can influence
the general performance. To maintain the number of results constant, we have

120 Hybrid-reasoning

repeated the same experiment adding to the knowledge base all the possible
results so that even if reasoning is not activated the same number of results is
retrieved (“Ins.” means insertion).

From the results presented in the table, we notice that the response time
progressively increases as we include more rules. Such a behavior is clearly
expected since more computation must be performed as we add new rules.
However, in some cases (like query 12) there is a significant difference even
if the query does not require the application of any rule. The difference is
due to the cost of storing the results during the query execution to ensure the
completeness of the backward-chaining algorithm. This operation is clearly a
non-negligible contributor to the overall performance.

We can compare the response times reported in the third column with the
ones of the penultimate column to compare the performance of the reasoning
at query time of our approach against traditional full materialization. In fact,
because the input data already contains the whole derivation, a single lookup
can be used to estimate the cost that we would have to pay if all the inferences
were pre-materialized beforehand. From the results we notice that on average
the response time is between one and three orders of magnitude slower. In
case the query needs to process and/or return many triples, the difference
is certainly significant. However, the response time is still in the order of
the hundreds of milliseconds and therefore, from the user perspective, the
difference is less noticeable and more easily tolerated especially considering
that a large precomputation phase is no longer needed.

5.5.3 Discussion

In our evaluation, we chose to evaluate our method using the most common
and large-scale datasets currently available in order to evaluate how hybrid
reasoning would perform on current data and realistic queries.

The measurements that we report have shown that large scale OWL RL
reasoning is indeed possible, even on a relatively modest computer architecture.
However, we must point out that these datasets do not (yet) use all the features
introduced with the OWL 2 language and, to the best of our knowledge, there
is no large-scale benchmark that extensively uses these new features.

Therefore, there is a remaining open question on what the performance
would be on an input that exploits all the features of the OWL 2 language.
While such problem is beyond the scope of this chapter, we can make some
considerations by looking at the experiments here presented.

First of all, our approach most likely would not able to guarantee the same
response time in the worst-case scenario. This is not particularly due to a

5.6 Related Work 121

limitation of our method, but rather to the high computational complexity
intrinsically required by reasoning.

However, even without looking at the complete worst-case scenario (which
is very unlikely to happen in practice), there can be other cases where the
performance could be significantly worse. In our experiments, we noticed that
as the size of the proof tree increases, so does the potential derivation of dupli-
cates due to the potential higher number of combinations. In Section 5.4.1, we
tackled this problem by proposing some initial algorithms to limit the number
of duplicates. However, our work in this respect is still initial and further re-
search on this particular aspect might become necessary in order to scale not
only in terms of input size but also in terms of reasoning complexity.

Summarizing, we observe in our evaluation that fairly complex reasoning
can be performed rather quickly (in a matter of few seconds in the worst case)
on realistic queries and on large data. However, the reader should keep in
mind that there could be worst-case scenarios (which do not seem to appear
on current data) where the performance is significantly worse, and this is
mainly due to the theoretical high worst-case complexity that is inherently
present in the reasoning process.

5.6 Related Work

Applying rules with a top-down method like backward-chaining is a well-known
technique in rule-based languages like Datalog [17]. In this work, we optimized
the computation to exploit the characteristics of RDF data and execute a
standard set of rules. Our backward-chaining algorithm is inspired by the
QSQ algorithm and the traditional semi-naive evaluation algorithm which are
well-known techniques in logic programming. A similar termination condition
to ours is employed also in the RQA/FQI algorithm [56].

In our approach, we exploit the availability of the precomputation using a
sideway information passing (SIP) technique during the execution of the rules.
This technique is used in other approaches like in the magic set rewriting
algorithm [7]. However, while the magic set algorithm uses it at compile-
time to construct rules bottom-up, we employ this technique at runtime to
execute queries in a top-down manner. Also, SIP strategies are similarly used
in generic query processing to prune irrelevant results. In [39] the authors
propose two adaptive SIP strategies where information is passed adaptively
between operators that are executed in parallel.

Some RDF Stores support various types of inference. 4store [68] applies
the RDFS rules with backward-chaining. Virtuoso [23] supports the execution

122 Hybrid-reasoning

of few (but not all) OWL rules. BigOWLIM [13] is a RDF store that supports
the OWL 2 RL ruleset by performing a full materialization when the data is
being loaded. Another database system that performs OWL RL reasoning in
a similar way is Oracle: In [44] the authors describe their approach reporting
the performance of the inference over up to seven billion triples. Another
approach in which the OWL RL rules are used is presented in [72] where the
authors have encoded OWL RL reasoning in the context of embedded devices,
and therefore optimizing the computation for devices with limited resources.

Some work has been presented to distribute the reasoning process using su-
percomputers or clusters of machines. In Chapter 2 we used the MapReduce
programming model to improve the scalability. In [94], the authors imple-
ment RDFS reasoning using the BlueGene supercomputer. To the best of our
knowledge none of these approaches supports the OWL RL rules.

Implicit information can be derived not only with rule-based techniques.
In [65], the authors focus on ontology based query answering using the OWL 2
QL profile [91] and present a series of techniques based on query rewriting to
improve the performance. While we demonstrate inference over a much larger
scale, a direct comparison of our technique with this work is difficult since
both the language and reasoning techniques are substantially different.

A series of work has been done on reasoning using the OWL EL profile.
This language is targeted to domains in which there are ontologies with a very
large number of properties and/or classes. [22] presented an extensive survey
of the performance of OWL EL reasoners analyzing tasks like classification
or consistency checking. Again, the different reasoning tasks and considered
language make a direct comparison difficult for our approach.

5.7 Conclusions

Until now, all inference engines that can handle reasonably expressive logics
over very large triple stores (in the orders of billion of triples) have deployed full
materialization. In this chapter we have broken with this mold, showing that it
is indeed possible to do efficient backward-chaining over large and reasonably
expressive knowledge bases.

The key to our approach is to precompute a small number of inferences
which appear very frequently in the proof-tree. This of course re-introduces
some amount of preprocessing, but this computation is measured in terms of
minutes, instead of the hours needed for the full closure computation.

By pre-materializing part of the inference upfront instead of during query-
time, we are able to introduce a number of optimizations that exploit such

5.7 Conclusions 123

precomputation to improve the performance during query-time. To this end,
we adapted a standard backward-chaining algorithm like QSQ to our usecase
exploiting the parallelization of current architectures.

Since our approach deviates from standard practice in the field, we have
formalized the computation using the theory of deductive databases and ex-
tensively analyzed and proved its correctness.

We have implemented our method in a proof-of-concept Java prototype
and analyzed the performance over both real and artificial datasets of five and
ten billion triples using most of the OWL RL rules. The performance analysis
shows that the query response-time for our approach is in the low number of
milliseconds in the best cases, and increasing up to few seconds as the query
increases in its complexity. The loss of response time is offset by the great gain
in not having to perform a very expensive computation of many hours before
being able to answer the first query.

Obvious next steps in future work would be to investigate how our ap-
proach can further scale in terms of data size and reasoning complexity and
to understand the properties of the knowledge base that influence both the
cost of the limited forward computation and the size of the inference tree.
Also, it is worth to explore whether related techniques such as ad-hoc query-
rewriting like the one presented in [65] can be exploited to further improve the
performance.

To the best of our knowledge, this is the first time that complex backward-
chaining reasoning over realistic OWL knowledge bases of ten billion triples
has been realized. Our results show that this approach is feasible, opening the
door to reasoning over much more dynamically changing datasets than was
possible until now.

124 Hybrid-reasoning

125

Chapter 6

Reasoning and SPARQL on a distributed architecture

In Chapter 5 we described a method to reduce the computation of traditional
backward-chaining by precomputing some selected queries. We focused our at-
tention on the correctness of such approach, demonstrating that its application
is harmless in a way that no derivation is missed.

In this chapter, we complete our discussion describing the implementation
of hybrid reasoning on a distributed architecture. In other words, if before we
explained “what” we are doing, now we will discuss “how” we can do it.

To this purpose, first we have grouped the rules in our ruleset into four
abstract categories and propose a different rule execution algorithm for each
of them. Then, since normally users interact with RDF knowledge bases using
the SPARQL language, we also explore the possibility of interleaving the rules
execution with the processing of basic graph patterns of SPARQL queries [66]
and evaluate the performance using a distributed (also called shared-nothing)
architecture.

As we will describe in the remaining of this chapter, implementing efficient
reasoning (and querying) on a large input is a challenging task and a naive
implementation might lead to severe performance problems. We addressed
some crucial issues in designing our system architecture exploiting the fact that
some queries are already precomputed as described in the previous chapter.

We have implemented our method in the QueryPIE prototype and eval-

126 Reasoning and SPARQL on a distributed architecture

uated the performance on artificial data of a size between one and hundred
billion triples. The evaluation shows that our prototype is able to execute
small but realistic queries on a dataset of a size up to hundred billion triples
(which accounts to about three times the estimated size of the entire Semantic
Web) using 16 computational nodes with a response time that is often un-
der the second. To the best of our knowledge, such performance sets a new
limit of the amount of Semantic Web data that is possible to query using a
moderated-size network of machines.

We have organized the remaining of this chapter as follows: Section 6.1
contains a description of the overall system architecture reporting some initial
assumptions and challenges. After this, in Section 6.2, we describe how the
data is stored and distributed across the nodes. Next, in Section 6.3, we
describe in detail the rule execution and in Section 6.4 how this process is
interleaved with the execution of the multi-patterns SPARQL queries.

In Section 6.5 we present the evaluation of our method using as example
the LUBM SPARQL queries. In section 6.6 we report on related work and in
Section 6.7 we indicate directions for future work and draw the conclusions of
this work.

6.1 System architecture

We identify two main tasks for our system: (i) perform reasoning by applying
a set of rules to derive triples that match the input triple patterns; (ii) join the
bindings of the triple patterns in the BGP of the SPARQL query and return
the results to the user.

From a conceptual point of view, these two operations are independent
from each other. In principle, we can abstract the task of applying the rules
from the broader context of answering SPARQL queries and define it as a
process that receives as input a triple pattern and returns a set of bindings.
Even though such independency holds at a conceptual level, in practice these
two tasks are often related because of efficiency reasons. For example, it is a
common practice to push down unary SPARQL operators to the physical data
layer in order to limit the number of retrieved bindings.

Initial Assumptions. We consider computational clusters as our physical
architecture of reference. In this context, we are called to partition both data
and computation across a set of loosely coupled machines. One of the machines
in the network is elected to be the interface between the user and the cluster.
This machine is responsible to submit the SPARQL queries for the execution
and collect the results of the query. In principle, in our architecture every

6.2 Data Storage 127

machine can accept a query and collect the results. Because of this, we can
abstract our physical architecture to a logical network where every node has
stored a chunk of the data and can communicate one-to-one with all other
nodes.

We exclude from our discussion the challenging and important problem
of determining the best query plan and we assume that such plan is known
beforehand. Further investigation on this issue should be seen as future work.

Also, we designed our architecture optimizing the computation to efficiently
answer queries that do not require the processing of a large amount of data.
We argue that applying inference at query time with large analytical queries
is in principle an inefficient choice, because the additional computation would
become too expensive to perform at query-time. Techniques based on forward-
chaining where the entire inference is precomputed have shown to be very
efficient in handling such cases (as described in Chapters 2 and 4).

Challenges. In Chapter 1 we outlined three main challenges for imple-
menting an efficient distributed reasoning approach. These are: large data
transfer, load balancing, and reasoning complexity. The first challenge warns
that an approach designed to perform frequent large data transfers is in prin-
ciple inefficient because such operation is expensive on modern architectures
and should be avoided whenever possible. The second challenge is of funda-
mental importance in a distributed setting because load balancing problems
lead to severe performance inefficiencies as the number of machines increase.
The third problem is specifically related to reasoning (in contrast to the other
two which are common problems in distributed systems) and relates to its high
theoretical computational complexity.

We made some choices in designing our system architecture in order to
reduce the effect of these three problems on the overall performance and min-
imize their impact on the scalability. In the next three sections we will point
out how such choices relate to these issues.

6.2 Data Storage

The distribution of the data influences how the computation should be par-
allelized. For example, the MapReduce programming model exploits the fact
that the data is not indexed in order to efficiently parallelize the map tasks.
On the contrary, relational database technology very often heavily relies on
the data indices to achieve high performance data lookups. In our context,
the response time is an important constraint and this makes it essential that
we build and maintain a series of data indices.

128 Reasoning and SPARQL on a distributed architecture

A complete description of the physical storage of our system model goes
beyond the scope of this chapter. Here, we will limit to provide a high level
description necessary to understand the overall architecture.

First of all, we make an important distinction between the storage of triples
that are part of the precomputed patterns (these triples are materialized before
query time as explained in Chapter 5) and the other ones. The precomputed
triples (i.e. the ones in the edb relations SQ in Algorithm 13) are replicated on
every node and stored in a series of in-memory hash maps. On the contrary, all
the other triples are not replicated, but rather indexed and partitioned across
the nodes∗.

Currently, maintaining a series of indices with all the possible triple per-
mutations is the current state of the art for RDF data [96]. Our approach
follows this lead and creates six different indices with the permutations spo,
sop, pos, pso, ops, and osp.

These indices are created and range-partitioned across the nodes of the
network using a MapReduce based algorithm. The method that we used relies
on two MapReduce jobs: The first job calculates with sampling the statistical
information necessary to find the boundaries of the partitions of the index,
while the other uses this information to equally partition the triples and per-
form a global sorting. After the indices are created, we store the data in an
on-disk data structure. To this end, we do not use a traditional B+Tree to
store the entire triple, but we have rather implemented a variant of B+Tree
to retrieve the first element of the index and store the list of the second and
third elements in a block-based list.

In our adopted method, the choice of replicating the precomputed triples
on all nodes has the beneficial effect of reducing the problem of large data
transfers. Since all of them are available locally, our sideways information
passing strategy (described in Section 5.2.1 of Chapter 5) can be implemented
locally without any data transfer.

Also, the decision of range-partitioning the indices is of crucial importance
to understand the load balancing properties of the system. In fact, if the
data is range-partitioned then most likely only a subset of the nodes contains
the relevant data to answer the query. If the query requires the access of
a small amount of data, then such choice is ideal because the overhead of
contacting all the nodes will be higher than the advantage of exploiting the
total computational power of the cluster. However, in case the query requires
the access to a large collection of data, then such solution might introduce

∗Note that these indices contain also a copy of the precomputed triples that are also
available in the in-memory hash-maps. This is to guarantee the completeness of the algo-
rithm (see Chapter 5 for more details).

6.3 Rule Execution 129

load-balancing problems because only the machines that store the data can
execute the query (while the others are unused). By range-partitioning the
data, we are indirectly optimizing our system to efficiently answering small
queries, and such conclusion is inline with our initial assumptions to focus on
the performance over small queries.

6.3 Rule Execution

In the previous section we described how the data is stored and distributed in
our architecture. In the next two sections we will focus our attention on the
distribution of the computation and describe the execution of the inference
rules and of the SPARQL queries.

The first stage in the execution of our system consists in performing the
prematerialization of some specified triple patterns using the Algorithm 13
described in Chapter 5. This operation is performed before the user can query
the data and it is necessary in order to guarantee the completeness. After this
algorithm is terminated, all the precomputed triples are replicated on each
node and at this point the system is ready to accept user queries.

At this point, once the system has received a SPARQL query in input, it
proceeds retrieving the triple patterns that are part of the query and, for each
triple pattern in the query, the system invokes backward-chaining reasoning
using Algorithm 12.

The backward-chaining reasoning process is described in detail in Chap-
ter 5. In brief, given an input triple pattern, the program constructs a tree
(called proof tree) which has the original query as root and several subqueries
as leaves. The nodes of this tree contain the rules that might derive triples
relevant to this query. These rules will receive in input the triples that come
from the lower levels of the tree and produce derivation that will serve as the
input of the rules at the parent level.

In this chapter, we will not describe the execution of the backward-chaining
algorithm because such discussion was presented in the previous chapter. Here,
we will rather focus on the execution of the single rules that are applied in this
process and describe how we execute them in our distributed architecture.

Physical rules execution. We can abstract the application of a rule as a
generic action which receives some triples in input and returns some others
in output. Consequently, a path from the root of the tree to a specific leave
can be seen as a sequence of actions or, as we call it in our system, a chain of
actions.

130 Reasoning and SPARQL on a distributed architecture

Cat. Body Head
1 T (X,SCO,Z), ⇒ T (X,SCO, Y)

T (Z, SCO, Y)
2 T (A, TY PE,X), ⇒ T (A, TY PE, Y)

T (X,SCO, Y)
3 T (P, TY PE, TRANS), ⇒ T (X,P, Y)

T (X,P,Z)
T (Z,P, Y)

4 T (C, INTER,X), ⇒ T (Y, TY PE,C)
LIST [X,C1, ..., Cn]
T (Y, TY PE,C1)
...
T (Y, TY PE,Cn)

Table 6.1: Example of OWL RL rules in each category. We used the abbrevi-
ations reported in Table 5.1 to represent standard URIs. For conciseness we
introduced the predicate LIST to indicate a list of terms encoded using the
RDF syntax.

A chain of actions is the unit of computation in our architecture. When a
computing node receives a triple pattern as input, it generates several chains
of rules that correspond to the paths of the proof tree for the given query.

These chains start with a triple pattern that must be read from the physical
data layer. Depending on the triple pattern, the appropriate index is chosen
and the chain is sent to the nodes that might contain relevant data. All triples
that are read from the data layer will be passed to the first rule in the chain
until the last one will return triples to be added in the answer set.

The physical execution of a rule depends on the number and type of its an-
tecedents. We identified four categories into which each rule can be classified:

1. Rules that have as antecedents only precalculated patterns;

2. Rules that have as antecedents one or more precomputed patterns and
exactly one generic pattern;

3. Rules that have as antecedents a fixed number of generic patterns;

4. Rules that have as antecedents a variable number of generic patterns.

In the remaining of this section, we will describe how rules of each category
are executed in our system. To ease the comprehension, we report in Table 6.1

6.3 Rule Execution 131

Algorithm 14 Algorithm for the execution of rules of the 2nd category. This
code is executed only once at loading-time. r is the considered rule while
Database represents the input data (explicit triples and partial derivation)

1 precomp_t := ∅ //Contains the join results of the precomputed patterns in the rules body
2 gen_p := ∅ //Generic pattern in the rules body
3 for(∀ p ∈ r.BODY)
4 if p v PrecompPatterns then
5 tuples := lookup(p, Database)
6 if tuples = ∅ then
7 return ∅ //rule is not active
8 end if
9 precomp_t := precomp_t on tuples

10 else
11 gen_p := p
12 end if
13 end for
14 shared_vars_h := { var | var ∈ rule.HEAD.vars ∧ var ∈ precomp_t.vars}
15 shared_vars_p := { var | var ∈ gen_p.vars ∧ var ∈ precomp_t.vars}
16 for(∀ v ∈ shared_vars_p)
17 valv := πv(precomp_t)
18 θg := MGU(inst_head,gen_p)

an example rule for each of them. We will start from the simplest category
and finish with the most challenging one.

Category 1 In our system, the precomputed triples are replicated on all
nodes. Because of this, all the rules in this category can be executed locally,
without any communication between the nodes, simply performing a hash join
between the in-memory data structures. In case the number of triples to join
is large (e.g. above a specified threshold), the join is split in several threads
and executed in parallel within the single node. Since these joins are executed
locally, the execution of these rules do not relate to the problems of large data
transfer and load balancing among the nodes.

Category 2 Rules in this category require a join between a set of triples that
is locally available in main memory, (i.e. the precomputed triple patterns) and
a generic triple pattern that is read from the input of the chain. Because the
triples from the generic pattern might reside on different nodes, the execution
of rules in this category might either require some data transfer between the
nodes or cause load balancing problems. Therefore, the execution strategy
must address these issues properly.

In our explanation we will use the second rule of Table 6.1 as an example,
but the algorithm is generic and is applied for every rule in this category.

132 Reasoning and SPARQL on a distributed architecture

Algorithm 15 Algorithm for the execution of rules of the 2nd category. This
code is executed when the rule is triggered to a answer a given query. In this
algorithm r is the considered rule. Database represents the input data (explicit
triples and partial derivation), and Q is the input query and inst head is the
instantiated head.

1 if shared_vars_h = ∅ or all shared_vars_h in inst_head are not bound then
2 inst_gen_p := θg(inst_head)
3 for(∀ v ∈ shared_vars_p)
4 inst_gen_p.v := valv // Set a reference to ‘‘v’’ in inst_gen_p
5 retrieved_tuples := infer(inst_gen_p,Q)
6 else
7 filteredPrecomps := inst_head on precomp_t
8 retrieved_tuples := ∅
9 inst_gen_p := θg(inst_head)

10 for(∀ t ∈ filteredPrecomps)
11 θp := MGU(filteredPrecomps,inst_gen_p)
12 retrieved_tuples := retrieved_tuples ∪ infer(θp(t),Q)
13 end for
14 end if
15
16 all_subst := retrieved_tuples on precomp_t
17 return

⋃
θ∈all subst θ(Q)

We can divide the execution of these rules in two parts. The first part
is executed only once during loading time because it does not depend on a
specific input query while the second is executed to answer a given query. We
reported in Algorithm 14 the operations that are performed at loading time.
First, the algorithm identifies the precomputed triple patterns in the body of
the rule (line 5) and joins them together using an hash join. This operation is
performed locally, without any node communication. In case the join does not
produce any tuple (line 7) then the rule is deactivated since it cannot produce
any derivation.

After this, the algorithm calculates the variables that are shared between
the head of the rules and the precomputed patterns (line 15) and between the
precomputed patterns and the generic one (line 16). For each of these vari-
ables, the algorithm performs a projection on the precomputed joined tuples
to retrieve all their possible values (these are stored in the sets valv). The
value of these variables in the input query is used at query time to determine
the execution strategy.

After these operations are completed the rule is ready to be invoked in order
to answer a given query and we report the operations that are performed to
this purpose in Algorithm 15.

Here, the algorithm receives in input a query Q and needs to join the triples

6.3 Rule Execution 133

parts of the triple body in order to return conclusions that match the query Q.
These triples can be divided between the ones that belong to the precomputed
patterns and the ones that belong to the generic one. While all the triples that
are part of the precomputed patterns are already available in main memory,
the triples that match the generic patterns must be retrieved from the data
layer (or by the recursive application of other rules). Therefore, the first task
of the algorithm consists of retrieving such generic triples. This operation is
performed in two ways, depending on the value of the variables in the input
query:

− In case the shared variables in the input query are unbound (e.g. the in-
put query is T(X,TYPE,Y)), then we are unable to restrict the search to
some of the possible values in the precomputed set, and we must perform
a join between all the precomputed triples and the generic pattern.

Since all the possible values of the shared variables were precalculated
during query-time (in the variable v∗), and are globally accessible in main
memory, the rule executor can set as value of the shared variable in the
new query a reference to these values (line 4) and invoke the function
infer to retrieve all the triples (notice that the value of variables in the
head which are shared with the generic pattern are passed directly using
the function θg). In our example, this would mean that the system will
launch a query like T(A,TYPE,ALL SUBCLASS) where ALL SUBCLASS

consists of a reference to all the terms that appear as subject of the
subclass triples.

− In case the shared variable in the head is bound to a value (or a set of
values), we are able to restrict the set of possible values to use in the
generic pattern by performing a join between the precomputed tuples
and the values of the head. Therefore, for each of the resulted values,
we generate a new query substituting the shared value of the generic
pattern with each of the possible values from the precomputed set.

In our example, such condition would appear if there would be an input
query like T(X,TYPE,c) and c is a class with a number of generic sub-
classes ci. In this case, the algorithm would retrieve all the subclasses of
c and for each of them launch a new query T(X,TYPE,ci) (line 12).

In both cases, after the algorithm has retrieved the inferred triples it still
needs to perform the join with the precomputed tuples to calculate the actual
derivation (line 16). In our case, such operation is translated with an hash

134 Reasoning and SPARQL on a distributed architecture

join between the triples that are passed from the input of the chain and the
precomputed tuple set that is available in main memory.

The rule execution strategy that we just proposed tackles the problem of
avoiding the transfer of large amount of the data because: (i) in the first case
we only need to transmit a reference to a set of values available on each node,
and, by transmitting only a reference instead of generating as many queries as
all the possible values, we reduce the overhead of launching multiple queries;
(ii) in the second case we rely on the assumptions that given a specific class the
number of subclasses is limited and therefore the number of queries is small.

Also, such execution strategy limits possible problems of load balancing
because the join between the generic and the precomputed triples is always
executed locally since one side is always available in memory, and this makes
the data join an “embarrassingly parallel” operation. Because of this, the
execution of these rules does not introduce any load balancing problem between
the nodes as it could potentially happen if, for example, the data is incorrectly
partitioned.

Categories 3 and 4 Rules of these categories are more challenging than
the previous ones because they require a join between a number of generic
triple patterns. In case of rules of the third category, the number of generic
patterns is predefined. However, if the rules belong to the fourth category,
then the problem is worsened by the fact that the number of generic pattern
is not predefined and must be dynamically generated from the input data.

As an example, consider the fourth rule in Table 6.1. Such rule allows us
to derive that a particular term x is an instance of a generic class C if C is
defined as the intersection of n classes and that the term is an instance of all
of them. The length of the intersection is variable and it is specified with RDF
triples.

In RDF, a list of terms is encoded using the predicates rdf:first and
rdf:next. Therefore, the first problem consists of calculating the elements
of the list by retrieving all the “first” and the “rest” RDF triples and recon-
structing the content of the lists by joining these triples.

We have observed that all the lists that are used in the rules antecedents
share a variable with one precomputed pattern and we empirically measured
that the number of such lists is not large. Such observation is to be expected
since normally there is a 1:1 relation with the precomputed patterns they are
joined with (for example, a generic class C is normally defined with one or at
most very few lists of intersections). Therefore, since the number of these lists
is limited, we implemented an algorithm that precalculates the content of all

6.4 SPARQL queries 135

the lists at loading time by launching two queries that retrieve all the “first”
and “rest” triples, and replicating the list contents on all the nodes.

After this operation is performed, the main problem in the executing rules
of these categories is that they require a join between triples that reside on
different nodes. Because of this, while eventual joins between precomputed
and generic patterns in the rules body can be performed as described before,
in order to execute a join between the generic patterns a data transfer between
the nodes cannot be avoided in any case.

In our system, in order to implement this operation we implemented the
strategy of broadcasting one side of the join to the other nodes and perform the
final join on a single machine using an hash join. As an example, suppose that
one rule requires to join two generic patterns g1 and g2. First, the algorithm
will query the knowledge base with g1 and collects all the triples on a single
node. Then, it will calculate all the possible values of the shared variable with
the next generic pattern and broadcast them to all nodes. After this, it sets a
reference to this set of values in g2, and query the knowledge base collecting
all the results in the same node where the actual join is computed.

Broadcasting one side of the join to all the other nodes is an expensive
operation that should be avoided whenever possible. To this end, we have
implemented a caching mechanism to avoid to broadcast a set of values if
this was already done before and in our experiments we have observed that
such caching mechanism is very effective since it prevented broadcasting most
of the times. Given that our initial assumption was to design a distributed
architecture to execute small queries we conclude that such execution strategy
suffices.

However, if the number of intermediate triples was to be large then such
execution strategy could potentially generate a load unbalance between the
nodes since all the intermediate results must be collected on a single machine
and a caching mechanism (which relies on set comparison) could become too
expensive to be perform every time. Since such cases are beyond the scope of
our architecture, here we will simply acknowledge their existence and future
research is necessary in order to efficiently deal with them.

6.4 SPARQL queries

SPARQL is a broad and generic language, but at its core each SPARQL query
corresponds to a graph pattern matching problem. In this chapter we consider
only the most popular category of the possible SPARQL graph patterns that
are the basic graph patterns (BGP). These patterns are simply defined as a

136 Reasoning and SPARQL on a distributed architecture

set of triple patterns. We require that each triple pattern share at least one
variable or RDF term with at least another pattern. Therefore, given a BGP
G, for all triple patterns t1 ∈ G there must be another t2 ∈ G so that at least
one variable or term in t1 is also in t2.

Algorithm 16 Overall algorithm of the execution of a SPARQL query

1 R ← infer(Q[0])
2 for i = 1 to Q.length
3 if R = ∅
4 return ∅
5 for ∀ V ∈ R.Varset ∩ Q[i].Varset
6 send_to(all_nodes,R.V)
7 Q[i].V = {R.V}
8 P ← infer(Q[i])
9 R ← P on R

10 return R

Performing efficient SPARQL query answering in a distributed scenario is a
well-known challenging task. In our context, the problem is even more complex
because we intend to enrich this process by adding just-inferred triples to the
query results.

In our system, we implemented a sequential SPARQL execution strategy
where the triple patterns that constitute the SPARQL query are retrieved
and joined together one by one. At each step, the intermediate results of the
SPARQL query are “pushed down” in the reasoning process until the join is
executed directly in the data layer.

To illustrate this methodology in more detail, we report in Algorithm 16
the overall algorithm. The input consists of the sequence of triple patterns
Q that constitutes the body of the SPARQL query. At first the algorithm
retrieves all the bindings of the first triple pattern (line 1). In case the query
consists only of one pattern, the result is immediately returned.

Before proceeding joining the other patterns in the query, the algorithm
broadcasts the bindings that will be used in the next join to all the nodes (lines
5 and 6). After this, the algorithm substitutes the original variables name in
the next pattern in the list with a reference to the bindings calculated (line 7).

The operation of broadcasting a set of intermediate bindings and set a ref-
erence in the following queries is similarly performed when the system executes
rules with multiple generic patterns. However, in this case such operation does
not replace the actual join between the patterns in the SPARQL query. It sim-
ply reduces the reasoning process to infer only triples which are relevant to
the SPARQL query.

6.4 SPARQL queries 137

Therefore, once the algorithm has retrieved the other pattern, it still has
to perform a join between the two patterns (line 9). This join will have a hit
ratio of one or more, since the terms were already filtered when being retrieved
from the knowledge base.

The advantage of integrating SPARQL query execution and the inference
process in this way is three fold: (i) the rules execution process becomes in-
dependent from the SPARQL query execution because the list of bindings is
treated as a single entity, as it is during the execution of rules of the third
category; (ii) we avoid an exponential generation of chains by substituting
each single value of the bindings in the new pattern. Therefore, by pushing
down the set of values instead of generating a single branch for each possible
combination we reduce the overhead of performing multiple lookups in the
knowledge base; (iii) if we perform the joins directly on the data layer, then
we can exploit the fact that the index is sorted, and implement this operation
using a fast merge join.

It is quite frequent that SPARQL queries define a list of patterns that
share only one variable and have only RDF terms as remaining elements. Such
queries provide for an interesting optimization to reduce the computation.

For example, suppose we have the following list of patterns: ?p :worksFor

:University and ?p :type :Person. Here, a generic SPARQL engine will
first retrieve the pattern ?p :worksFor :University and then move to the
second one.

In our case, after the engine has retrieved all the results for the first query,
it will set a reference to the values in the second pattern and proceed query-
ing the knowledge base. However, instead of invoking the complete reasoning
algorithm a second time, it will simply retrieve the explicit triples and apply
only once rules of the first and second category. These rules are not executed
in parallel but rather in a sequence (in our architecture we can set how many of
these rules can be executed at the same time). Whenever triples are inferred
using this simplified version of reasoning, the algorithm removes the corre-
sponding binding from the reference set of values used in the second pattern
(i.e. all the “?p” calculated with the first pattern). If at the end of this process
there are still some “?p” which are not verified, then the algorithm will repeat
the query activating this time complete reasoning. Otherwise, since all the
bindings were already verified, it proceeds evaluating the following pattern (if
any).

This optimization relies on the assumption that most inference can be cal-
culated just with a single application of the inference rules. For this particular
type of queries, such optimistic strategy can greatly reduce the computation
of reasoning avoiding to evaluate the complete proof-tree.

138 Reasoning and SPARQL on a distributed architecture

The disadvantage is that such optimization can be applied only if the pat-
terns share a single variable. If the second pattern contains an additional
variable that is not part of the join, then such optimization cannot be applied
because then we are required to perform complete reasoning in any case to
derive all the values of the additional variable.

6.5 Evaluation

We have implemented the algorithms described in this chapter in the QueryPIE
prototype. For the communication between the nodes, we relied on a set of
Java libraries called Ibis [6] that allows the abstraction of the physical nodes
as a logical network.

The LUBM [30] benchmark tool is the de facto standard for measuring
the performance of OWL reasoners over large knowledge bases. It gives the
possibility to generate an input with a variable number of triples using a
simple ontology for the university domain. Using this tool we generated three
synthetic datasets of 1, 10, and 100 billion triples.

As part of the benchmark there is a set of 14 queries that can be used
to query the data. These queries are of various types: some are selective and
return a limited number of results, while others require the processing of a large
amount of data and return many billion results. The proposed architecture is
designed to answer queries of the first type; therefore we exclude the last type
of queries (4 out of 14) and analyze the execution of queries that do not return
more than a few million results. For convenience, we reported the list of the
considered queries in Appendix B.3.

The evaluation was performed on the DAS-4 cluster†, which is a six-cluster
wide-area distributed system. Each cluster is interconnected with a wide-
area connection based on light paths of 10 Gbit/s. Each cluster consists of
a number of machines with heterogeneous hardware. In this evaluation, we
used the cluster at our university that consists of 74 nodes each equipped with
a dual quad-core CPU of 2.4GHz, 24 GB of main memory and an internal
storage of two disks of 1 TB in RAID-0 mode. For this experiments we chose
to use a low-latency InfiniBand connection of 40 Gbit/s instead of the standard
Gigabit Ethernet.

To the best of our knowledge, currently there is no other work described in
the literature where a complex ruleset like the one considered in this chapter
is applied on a very large input. Current approaches either calculate the entire

†http://www.cs.vu.nl/das4/

http://www.cs.vu.nl/das4/

6.5 Evaluation 139

Q. Resp. time (ms.) Results I/O access Cache
Cold Warm (#) # lookups GB Hits Miss

1 364.05 20.28 4 17 0.02 0 0
2 368.19 25.12 6 73 0.03 0 0
3 2041.20 493.89 34 19218 0.19 87 3
4 1283.88 82.42 719 194 0.5 0 0
5 2061.27 361.11 4 15493 0.29 100 2
6 11536.95 2784.72 7790 22220 5.90 200 6
7 1745.20 367.96 4 15461 0.09 100 2
8 1664.57 74.03 224 116 1.11 1 3
9 5717.32 1163.61 15 17580 2.75 118 4
10 12304.29 886.68 37118 188 15.01 0 0

Table 6.2: Response time of the LUBM queries on 1B triples

inference before query time or cannot scale to our scenario. Because of this,
we are unable to compare our performance with a baseline method.

Therefore, we designed a set of experiments in order to understand the
strong and weak points of our approach. We grouped them in three sections,
each with a different goal: In Section 6.5.1, we aim to measure the absolute
performance of our system. Next, in Section 6.5.2 we analyze the scalability of
our approach. Finally, in Section 6.5.3 our purpose is to evaluate the overall
efficiency of our system by analyzing the performance of the most expensive
query.

6.5.1 Performance

For this set of experiments we use as input a LUBM dataset of about 1 billion
triples, and distribute the computation over 8 DAS-4 nodes.

The first operation (after the data compression) consists of creating the six
data indices using MapReduce. To this purpose, we have written a program
using the Hadoop framework and deployed a small Hadoop cluster on 8 nodes
of the DAS-4 cluster. The operation of generating the indices took about 48
minutes. The execution time increases linearly with the input size.

After we generated the indices, we calculated the precomputed patterns
using the method explained in Chapter 5. This method consists of repeating
the execution of a set of queries until no further derivation is returned.

After the process of data preparation is finished, the users are able to query
the datasets. In Table 6.2 we report the execution of the LUBM queries on

140 Reasoning and SPARQL on a distributed architecture

the same dataset activating the execution of the OWL rules at query time.

The second and third columns report the response time of the system.
The time is measured from the moment that the query is launched to the
time where all the data is collected at the interface node. The second column
reports the cold runtime, that is the first runtime after the system is booted
and all data needs to be read from disk. The third column reports the warm
runtime, that is an average of the 29 consecutive runs of the same query. These
last runs are performed where all the data is in memory and no disk access is
performed.

The fourth column of the table reports the number of results. The fifth
column reports the number of data lookups performed on the data layer that
were necessary to apply the rules and execute the query. This number can be
used as an indicator of the complexity of the query. For example, both queries
1 and query 2 trigger a relatively low number of data lookups because not
many rules are executed. In contrast, the execution of query 6 requires more
than 20 thousands data lookups, and this indicates that the query is much
more complex than the previous two. Another indicator of the cost required
to execute the query is given in the sixth column that reports the number of
bytes read from the data indices during the first execution of the query. As
we can see from the table, some queries require a considerable amount of data
to be read (the worst case is for the last query where about 15 GB of data are
read from disk).

The last two columns of the table contain the number of cache hits and
misses during the execution of rules of the third and fourth category. As we
can see from the results, most of the times the cache is able to avoid a data
broadcast of the data since the number of hits is far higher than the number
of misses.

From the results presented in the table, we notice that the warm runtime
is always considerably lower than the cold runtime. This is due to the fact
that during the first run most of the data must be read from disk. On average
the cold runtime is in the order of few seconds while the warm runtime is
almost always below the second, which we considered to be an interactive
response time. The slowest warm runtime is reported for query 6 where it
takes about two seconds. The slowest cold runtime is of query 10 where it
takes about 12 seconds to read and process 15GB of data. In our experiments
this last query revealed to be the most expensive as we increased the data size
since it produces a large amount of results and requires a fairly complex rules
execution. In Section 6.5.3 we take it as a test case and analyze its execution
in detail.

6.5 Evaluation 141

10ms

100ms

1s

10s

100s

 1 10 100

R
es

po
ns

e
tim

e

Input size (billion triples)

31ms 30ms 32ms

Query 1

884ms 816ms 818ms

Query 3

5s 4s 5s

Query 6

105ms 99ms 108ms

Query 8

991ms

Query 10

12s

202s

Figure 6.1: Response time of LUBM queries varying the input size

6.5.2 Scalability

At first, we evaluated the scalability of our architecture by increasing the input
size and maintaining the number of nodes constant.

To this purpose, we have generated LUBM datasets of 1, 10 and 100 billion
triples and launched the LUBM queries using 16 nodes. In Figure 6.1 we have
plotted the response time of five LUBM queries against the input size. From
the figure, we notice that in four cases the response time remains constant.
This happens for query 1, 3, 6 and 8. The explanation for such performance
is that these queries consider an amount of data that is constant regardless of
the total input size. Therefore, our architecture is able to efficiently retrieve
maintaining the response time fairly constant even the input increases.

The performance of query 10 exhibits a different behavior: Here, the data
considered is not constant but increases with the input size. The number of
results changes with the data size as well: with an input of one billion triples
the output is about 37 thousand triples, while with a hundred billion it is
about 3.7 million. Because of this, the workload increases proportionally and
so does the total response time: while for one billion it was about a second,
with a hundred billion it becomes about 195 seconds. The linear correlation
between the input and the response time indicates that the performance of
our architecture for this query does not degrade as the input size increases.

In another set of experiments we kept the input size constant and changed
the number of nodes in the computation. We used the dataset of 10 billion
triples and executed three example queries doubling the number of nodes start-
ing from one up to 32. In Figure 6.2 we report the response time of both the

142 Reasoning and SPARQL on a distributed architecture

10ms

100ms

1s

10s

100s

16min.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

R
es

po
ns

e
tim

e

Number of nodes

Query 1 cold
Query 1 warm

Query 3 cold
Query 3 warm
Query 10 cold

Query 10 warm

Figure 6.2: Response time of LUBM queries varying the number of nodes

cold and warm runtime. Also in this case the performance of the queries is
not uniform.

In general, we observe that the cold execution time of the queries decreases
significantly as we increase the number of nodes. For example, the execution
of query 10 using one node takes about 50 minutes while it takes around
90 seconds using 32 nodes. The reason for this is that at the first run all the
information must be read from disk and if the data is distributed on more nodes
then this process is parallelized on more disks with a higher total bandwidth.

The same does not hold for the warm execution time of the queries. In
this case all the data is already loaded in memory and the disk access is no
longer the performance bottleneck. The execution time becomes in the order
of hundreds of milliseconds which is too small to benefit from the distribution
of the computation. In this case the performance bottleneck is represented by
the synchronization process between the nodes. Since the number of nodes
increases, the total response time is affected negatively by it and we observe a
decrease of performance as we increase the number of nodes.

We also observe a little fluctuation in the performance of the single runs
that is most likely due to the Java garbage collector which sometimes is being
activated during the computation. To improve this issue, we have used dif-
ferent garbage collectors algorithms and noticed that indeed such aspect can
significantly influence the performance.

Summarizing, we conclude that in our experiments our architecture is able
to maintain the response time constant for queries that involve a fixed amount
of data regardless of the input size. If the query workload increases with the

6.5 Evaluation 143

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

By
te

s
tra

ns
m

itt
ed

 (M
B)

Time (sec)

(a) Bytes Sent

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

By
te

s
re

ce
iv

ed
 (M

B)

Time (sec)

(b) Bytes Received

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

C
PU

 lo
ad

 (%
)

Time (sec)

(c) CPU Load

Figure 6.3: Plot of the network traffic and CPU load during the execution of
query 10 over 100 billion triples

input, like for query 10, then the performance exhibits a linear progression.
If we increase the number of nodes, queries with a relatively small workload

are penalized due to the increased synchronization cost. In contrast, queries
with a frequent disk access or that require a significant workload benefit from
having a higher disk bandwidth and the additional available computational
power.

6.5.3 Efficiency

In order to understand the performance of the architecture we monitored the
execution of the query 10 on the input of 100 billion triples using 16 nodes.

The first execution of the query is dominated by the time necessary to read
the data from local disks. Such run takes about 1 hour and about 1.7 TB of
data are read from the indices.

The next runs of the query benefit from having the data loaded in memory
and during the execution there is no access to disk. In this case the execution
time drops to around 187 seconds.

We monitored the nodes during the execution recording the number of
bytes sent and received and the CPU load of each node. We present these
measurements in Figure 6.3a, 6.3b, and 6.3c. In these graphs, the horizontal
axis represents the time in seconds while the vertical axis reports the metric
that we measure. Each line represents the behavior of one single node.

We notice that for the first 50 seconds there are only two nodes that are
active: their CPU load increases up to 800% even this happens for not more
than a second, which means that all the 8 cores of the machine are used (each
core has hyperthreading, and that brings the maximum load to 1600%).

After around 50 seconds the CPU activity become more intense and we
observe that several nodes become active, even the activity is rather irregularly

144 Reasoning and SPARQL on a distributed architecture

spread across the machines. However, we notice that during the computation
it never happens that all the cores are busy. Only in very few moments the load
reaches the 1200% which indicates that 12 out of the 16 virtual cores are being
utilized. Such results lead us to the conclusion that the computation does not
utilize all the available cores. Therefore, we expect that the performance will
not significantly increase if we increase the number of cores per machine.

If we look at the number of bytes exchanged between the nodes, we notice
very little network activity. Only in few moments there is a significant increase
in the network workload. However, such increase is not persistent and ends
immediately after one or two seconds. Such peaks in the network usage happen
when the system is broadcasting the intermediate results to the other nodes.
For example, we can observe one of these moments at around 124 seconds
where one node broadcasts about 700 MB of data to all the other nodes.

Even in such moments the network becomes the performance bottleneck,
we conclude that the network is not playing a crucial role in determining the
performance because it is involved only for few seconds over the entire run.

Therefore, by analyzing these results we have observed that there are two
main reasons that are limiting the performance of the system. The first consists
of the synchronization points, which are used in the execution of rules of the
third and fourth category. These points force the system to stop and wait until
all the other nodes have finished their computation.

The second reason is that one chain is executed by a single thread and
sometimes there are not enough chains to fill the entire computational power
of the node, so that the computation is bound by the performance of a single
core. In future work we are planning to investigate on these issues in more
detail and research for solutions to further increase the performance.

6.6 Related Work

RDF Storage. Our choice to store the six permutations of the triples is
inspired by [96]. In this work, the authors use a sequence of in-memory shared
and sorted vectors to navigate through the indices. Our approach differs from
it because we use different data structures which use a variant of B+Tree to
store the first element and sorted block-based lists for the second and third
elements.

Another efficient in-memory-only data structure is proposed in [5] where
RDF triples are stored in a 3-D adjacency matrix. Since such data structure is
not appropriate for sparse graphs, the authors use a gap compression scheme
to reduce the memory footprint. While such data structure is ideal for low-

6.6 Related Work 145

selectivity joins, its usage is limited by the main memory size.
In [61] the authors propose to use a hybrid data structure to store RDF data

on disk. Such data structure is a combination of an hash-table and B+Tree
to improve the O(logn) worst case of B+Trees with the constant lookup time
of hash tables. In order to guarantee constant lookup time, they generate one
index per all the 15 possible combination of the triple elements, which become
prohibitively expensive for very large collections of data.

A radically different approach is to store RDF data using vertical parti-
tioning, which was initially proposed in [1]. The weak points of such approach
is that the performance is not optimal when the predicate is unbound. A com-
parison of the performance of this approach against conventional tuple-based
approaches is presented in [71, 73]. In [37] the authors propose yet another
data partitioning criteria where the vertexes of the RDF graph are partitioned
using graph partitioning algorithms and the triples are assigned to these parti-
tions accordingly. Then, the triples are assigned to all partitions that contain
vertexes that can be reached starting from the triple with a maximum of n
hops. If n equals one, this partitioning scheme corresponds to join all triples
that share one variable and partition the results across the nodes.

An efficient RDF store is RDF-3X [59] but it does not support inference.
4store [68] applies the RDFS rules with backward-chaining. Virtuoso [23]
supports the execution of few (but not all) OWL rules. BigOWLIM [13] is the
only database that supports the OWL 2 RL ruleset but it applies the rules in
a forward-chaining way when the data is loaded and not at query time.

Implicit information can be derived not only with rule-based techniques.
In [65], the authors focus on ontology based query answering using the OWL 2
QL profile [91] and present a series of techniques based on query rewriting to
improve the performance. While we demonstrate inference over a much larger
scale, a direct comparison of our technique with this work is difficult since
both the language and reasoning techniques are substantially different.

In our approach, we use a sideway information passing (SIP) technique for
the execution of the most complex rules. This technique is similarly used in the
magic set rewriting algorithm [7]. However, while the magic sets algorithm uses
it at compile-time to construct rules bottom-up, we employ this technique at
runtime to execute queries in a top-down manner. SIP strategies are also used
for generic query processing to prune irrelevant results. In [39] the authors
propose two adaptive SIP strategies where information is passed adaptively
between operators that are executed in parallel.

SPARQL. In [58] the authors specifically address the execution of SPARQL
queries and present another light-weight method to provide highly effective fil-
ters on the query input streams. While these techniques are very effective, it

146 Reasoning and SPARQL on a distributed architecture

becomes complex to implement them in a completely distributed setting due
to the high level of required synchronization.

In [37] the partitioning scheme allows that some SPARQL queries can
be executed efficiently without any communication between the nodes. The
queries that still require a communication between the nodes are executed with
MapReduce.

In [46] the authors propose three strategies to execute SPARQL queries
over a number of sources that are available on the Web. These three strategies
require a different minimum level of knowledge about the data sources.

A similar assumption about the distribution of data is done in [32] where
the authors present a methodology to answer SPARQL queries using remote
data sources. This methodology alternates the execution of the query with
the deference of the URIs retrieved so far to discover new information that
can contribute to answering the query. These last two works differ from ours
because we assume that all the data is locally available so that it does not
need to be remotely retrieved during query time.

6.7 Future Work and Conclusions

Summary. The problem that we address in this chapter is to implement
the hybrid reasoning algorithms that we presented in Chapter 5 in a shared-
nothing architecture and integrate this process within the broader task of
answering SPARQL queries.

Notice that the use case that we tackled in this chapter is different than
the one considered in Chapter 4. In fact, in Chapter 4 we have considered the
execution of very large analytical queries typical of ETL scenarios assuming
that reasoning was performed beforehand (for example using the technique
described in Chapter 2). These queries require an high computation and this
justifies the usage of a programming model like MapReduce. On the contrary,
in the current and previous chapters we have focused on the execution of
much more specific queries and studied the impact of reasoning directly at
query time.

To this end, we evaluated the performance on a distributed scenario using
the OWL RL ruleset and the LUBM queries on datasets with sizes between 1
and 100 billion triples. The results show that in general the response time is
often under the second which is in the range that we consider as interactive
response time. We have also analyzed the scalability by increasing the input
size and the number of nodes and analyzed in detail the performance of the
most complex query in order to understand what are the factors that are

6.7 Future Work and Conclusions 147

limiting the performance.
Limitations and future work. From the results that we obtained, we

can identify some limitations that appear especially when we increase the input
size to hundred billion triples. While our architecture shows good performance
when answering small queries, we notice that in some cases the reasoning
process produces thousands of data lookups that becomes too expensive to
perform due to the extremely large amount of data that needs to be read from
disk. A similar situation is reached when the number of lookups is not so high,
but the queries are such that they require access to multiple locations in the
index. In both cases, the computation becomes too expensive to guarantee
interactive response time (and sometimes even to be performed at all).

Because of this, the presented evaluation hints to some directions for future
work. One possible research line could investigate whether a different rules ap-
plication strategy could be more efficient for very large queries. Our optimistic
strategy proved to be effective, and a similar principle could be extended to
handle other cases.

Further work could investigate whether a data distribution scheme that is
different from standard range-partitioning could be more effective to answer
larger queries. Also, further research is necessary to implement an efficient
query planning strategy that can be used when the cardinality of the triple
patterns cannot be estimated directly because the inference could produce an
undefined number of triples.

Another limitation is that in this chapter we consider only the execution of
basic graph patterns, while the SPARQL language allows other operations like
aggregation or projection. Future work should aim to implement the missing
functionalities.

One aspect that is not considered in our evaluation are the actual prefer-
ences of a potential user of our system (such aspect is also not considered in the
evaluation presented in the previous chapters). These preferences could play
a very important role in assessing the quality of our approach. For example,
if there is a specific use case where a user is interested in only a specific query
which is frequently requested, then a more sophisticated caching mechanism
could greatly improve the performance. Because of this, a line of future re-
search should aim to apply our method to some specific scenarios, and adapt
our system to their specific requirements to achieve better performance.

Finally, from a more high performance computation perspective, it is also
interesting to investigate in more detail in which measure the several compo-
nents of the architecture are responsible for the performance. Such analysis
would aim to identify exactly which hardware architecture would be ideal for
our approach. To this end, a number of experiments could be conducted on

148 Reasoning and SPARQL on a distributed architecture

different computer architectures than computational clusters. For example,
it would be interesting to evaluate the performance on SPARC T4/T5 based
systems or on others which have a significant larger amount of shared mem-
ory (in the orders of terabytes). In this way, we could identify more precisely
the bottlenecks of our system and consequently further improve the execution
improving the performance by using better hardware.

Conclusions. To the best of our knowledge, our approach is the first to
demonstrate not-trivial inference during the execution of SPARQL queries on
an input size of 1011 billion triples, which is one order of magnitude larger than
the current state of the art. These results are obtained by partitioning both the
data and the computation on a set of loosely coupled machines. We also show
how this process performs on a wide area network simulating a heterogeneous
environment with different machines and connections.

This work is the first in its kind and demonstrates that SPARQL queries
can be enriched with relevant data calculated with reasoning. While our cur-
rent implementation shows some limitations in processing large and complex
queries due to the very large amount of data to process, we demonstrated that
reasoning can be employed in enriching small but yet realistic queries on a
truly web-scale. Remaining challenges are to extend it to implement missing
functionalities and to further improve the performance to allow the execution
of more complex queries.

149

Part III

Discussion and conclusions

151

Chapter 7

Conclusions: Towards a reasonable Web

The problem of web-scale reasoning is a crucial obstacle in transforming the
original vision of a “Semantic Web” into reality. This problem can be tack-
led at different levels that range from a theoretical analysis to its physical
implementation. At each of these levels, web-scale reasoning poses several
research questions of a fundamental importance. For example, from a theoret-
ical perspective it is important to research algorithms with a computational
complexity that can be afforded on a large scale with current technologies.
On a lower and more technical level, engineering research questions that are
concerned, for example, on efficient storage and retrieval of RDF data, become
more relevant and have a high-priority.

In this thesis, we chose to approach this problem on the lowest of such levels
by researching methods to efficiently implement standard reasoning techniques
like forward and backward-chaining on a distributed system. While our eval-
uation shows that web-scale reasoning is indeed possible, in our research we
addressed only a part of the general problem and there are still several open
questions to be answered.

To this end, in order to truly solve the problem of web-scale reasoning,
extensive research must be conducted at every level in order to provide a
general and elegant solution to each of its issues. In this context, we argue
that research should not be conducted only “intra-level”, but also “inter-level”

152 Conclusions: Towards a reasonable Web

because findings discovered at one particular level might become potentially
useful to drive research at the other ones. For example, high-level research
(e.g. a theoretical analysis or a standardization process) might benefit from
being aware of what works and what does not when reasoning is implemented
on a distributed setting.

In order to facilitate such “inter-level” research, we believe that it is im-
portant to abstract the outcome of the specific work in terms of more generic
principles so that they can be used at different levels. For example, on a theo-
retical level our technical contribution might have little value as it is, since our
algorithms do not change the general computational complexity required by
reasoning. Nevertheless, with our techniques we have demonstrated reasoning
over a very large scale, and the underlying principles that have enabled this (if
any) might give useful insight to provide for more suitable theoretical models.

Because of this, in this concluding chapter we take a distance from our
technical contribution and analyze it from an higher perspective, with the
intention of abstracting it into some high-level considerations that could po-
tentially serve to this purpose. As an additional motivation, we argue that
such abstraction process is useful since it could contribute to the definition of
a sort of guideline to address similar problems in a distributed system.

For the purpose of this chapter, it is important to choose the right level
of abstraction because if we abstract too much then our conclusions might
become either trivial or too vague. In contrast, if we do not abstract enough
then such conclusions might loose their potential of being useful in a different
context.

Given such premises, we decided to reformulate a number of practical con-
siderations that arose from our experience as three “laws” that we believe hold
in our context and more arguably even in a more general setting. We must
warn the reader that there is a degree of speculation in our claims since such
laws are mainly based on empirical findings rather than on universal truths.
Therefore, they should be seen more as a lesson learned from experience rather
than a number of absolute laws that hold in all their generality.

We titled these three laws as follows:

− 1st Law: Treat schema triples differently;

− 2nd Law: Data skew dominates the data distribution;

− 3rd Law: Certain problems only appear at a very large scale.

We can see each of these laws as a pillar that represents an underlying
principle or assumption that was crucial in shaping the performance of our

7.1 1st Law: Treat schema triples differently 153

work. By symbolically standing on these three pillars, the methods that we
presented in the previous chapters were able to limit the problems outlined in
Chapter 1 and demonstrate reasoning on up to three times the entire size of
the Semantic Web. Each of them will be discussed in the following sections.
After this, in Section 7.4 we will report the overall conclusions of this thesis.

7.1 1st Law: Treat schema triples differently

In this thesis, we make a fundamental difference during the reasoning process
in handling the schema triples (which are extracted from the knowledge base
and treated differently) and the other ones. With schema triples we gener-
ically refer to those triples that define the domain of the knowledge. Such
distinction is very similar to the T-Box and A-Box distinction in description
logic. For example, the triple (:Student :subclassOf :Person) is a schema
triple because it simply states that all students are also persons.

In the reasoning methods presented in Chapters 2, 5, and 6, the schema
triples are always replicated on each node to minimize the data transfer dur-
ing the computation. In contrast, generic triples are not being replicated but
rather partitioned according to some criteria. In those chapters we have out-
lined why such division is beneficial for the computation: it reduces the data
transfer and allows the implementation of smart techniques to speed up the
execution. In doing so, we heavily rely on the assumption that on the Web
there are not so many schema triples while there are many more generic ones.
However, although the number of these triples is small, they are fundamentally
important because they are frequently used in inference rules as they appear
in almost all of the rules antecedents.

Sometimes, determining the set of all the schema triples might be a chal-
lenging operation. This is not the case of Chapter 2, because in there schema
triples can only be derived after the execution of MapReduce jobs which stores
the output on files. Since the data resides on a distributed file system, it is
simple to retrieve them in the following reasoning steps. However, in the con-
text of Chapter 5 the situation is not so simple, because schema triples can
be inferred at a later stage. This required us to introduce a procedure at the
beginning of the computation (and provide for a theoretical ground to ver-
ify its correctness) to ensure that this operation is performed without loosing
derivations.

Anyway, regardless of how challenging it is to retrieve the set of schema
triples, in both cases the evaluation clearly shows that such strategy is ben-
eficial in order to increase the performance. Therefore, with our first law we

154 Conclusions: Towards a reasonable Web

state that reasoning methods should aim to consider such distinction because
several optimizations can be introduced to make the computation more effi-
cient and the method more scalable. Empirical observations allow us to claim
that the computation to make this distinction (i.e. retrieve the schema triples)
is not an expensive operation and the gain obtained later certainly justifies the
cost of doing it.

7.2 2nd Law: Data skew dominates the data
distribution

In the previous section we stressed the importance of the schema triples and
reported on our strategy of replicating them on all the nodes, with the as-
sumption that the number of these triples is small on realistic data.

In this section we move our focus to the other type of triples, which are
the generic ones. Because in a large collection of data there can be many of
them, a strategy based on replication is not acceptable because the local space
on single machines is often not enough. Therefore, we are obliged to partition
the input across several machines.

The way data is partitioned across the nodes has a fundamental importance
in determining the overall performance of the system. Unfortunately, there
is no universal partitioning criteria that fits all needs. In fact, the chosen
partitioning criteria determines how and, (even more important) where the
computation occurs.

For example, in MapReduce the data is stored on files that reside on the
distributed filesystem HDFS where raw data blocks are replicated on a limited
number of nodes (three by default). When the Hadoop scheduler receives the
request of executing a map task, it schedules it on one of the nodes which
has the input locally stored. In this way, Hadoop moves the computation
rather than the data and this limits the problem of large data transfer. This
is an example of how the partitioning of the data influences the computation
because if the data would not be equally split among the nodes, then the
scheduler would not be able to provide for an effective way to parallelize this
operation.

We have observed in our experiments that current Web data is highly
skewed and this makes it more difficult to choose a partitioning criteria to
impose a fair balancing of the computation between the machines. Therefore,
the impact of data skewness is of great importance on the overall performance
and should not be underestimated.

7.2 2nd Law: Data skew dominates the data distribution 155

We have observed that data skewness does not always occur. From our
empirical analysis, we noticed that skewness appears more frequently on the
distribution of the predicates and the objects rather than on the subjects.
This means that while there is not a large variance in the number of triples
that share the same subject, there is a much larger difference in the number
of triples that share the same predicate or object (think for example all the
rdf:type triples). Such consideration can drive an implementation where,
given a generic input query, data is accessed through the subjects rather than
the predicates or objects.

In our work, we tackled the problem of data skewness in several ways. In
Chapter 4 we have introduced a new join mechanism that performs bifocal
sampling to determine which terms can introduce a load balancing problem.
A similar mechanism is used also for data compression in Chapter 3 and for the
reasoning over the owl:sameAs statements in Chapter 2. Furthermore, still in
chapter 2, we have further reduced the effect of data skewness by partitioning
the data using more than one resource, to avoid cases where the data is grouped
by a single popular resource.

In the second part of this thesis, data skewness becomes less important
because we focused on the performance of queries which do not require the
processing of large amounts of data (and therefore, its impact on the total
runtime is minimal). However, if we enlarge the scope of our research to large
and complex queries, then data skewness would become an issue and further
research would be necessary to achieve high-performance and scalability.

Summarizing, with this second law we intend to warn for the effect of
data skewness on reasoning and strongly encourage that a careful analysis is
performed on this issue in order to determine whether a generic algorithm can
be efficiently parallelized. In our work, we have addressed this issue in several
ways: among them, the most general consists of determining with statistical
analysis which terms might cause such phenomena and treat them differently.
In doing that, we have observed that data skewness is mainly present on the
distribution of the predicates and objects and this information can be used to
choose, whenever possible, to partition the data according to this criteria (or
alternatively using more resources).

156 Conclusions: Towards a reasonable Web

7.3 3rd Law: Certain problems only appear at
a very large scale

In the context of this thesis, a concrete evaluation of the performance is crucial
to assess how our methods would perform in a real scenario. In fact, while a
theoretical analysis provides for a good metric to establish the properties of a
method, modern computer architectures are very complex systems and only a
physical implementation can determine whether one approach indeed “works”.

Building a prototype that is able to deal with a massive amount of data is
not an easy task. In developing the prototypes used for our experiments we had
to address many technical issues and we noticed how particularly important
the implementation of a specific algorithm is in order to evaluate its scalability
and real performance.

From a research point of view, we are tempted to consider such issues
as unimportant because they often do not introduce any theoretical research
question. As a result, researchers frequently implement simple prototypes and
use them to verify the quality of their contribution. We argue that on a web-
scale such approach would be a dangerous mistake, because certain problems
appear only on a very large scale (e.g. data skewness) and if the prototype is
unable to scale to this extent, then we are unable to verify what is indeed its
real performance.

Because of this, we argue that simple proof-of-concepts often do not imple-
ment all the necessary elements to be representative. To support our claim, we
report some considerations about the development of our prototypes, WebPIE
and QueryPIE, highlighting why some purely engineering issues played a fun-
damental role in achieving high performance. Such issues are not typical of
our specific case but are commonly known in the domain of high-performance
applications. Therefore, a discussion on them is certainly relevant and poten-
tially useful for similar problems in our domain.

First of all, both WebPIE and QueryPIE are written in Java and consist
of respectively about 20000 and 27000 lines of code. The amount of lines can
already give an impression of the complexity of the prototypes. The choice
of which programming language is more suitable for high-performance appli-
cations is a very popular and fairly controversial topic. High-level scripting
languages are often used for prototyping because they allow a quick develop-
ment phase. However, we believe that such languages do not qualify in our
context because the process of interpreting code affects too much the overall
performance and this makes them not optimal in contexts where every single
computing resource is needed.

7.3 3rd Law: Certain problems only appear at a very large scale 157

In our case, we chose Java because all the supporting frameworks and li-
braries (namely Hadoop and Ibis) were written with this language. Java is
among the most popular languages (if not the most popular) and we consid-
ered it to be an acceptable compromise since it balances the (little) overhead
introduced by the JVM by providing a complete development environment.

The main limitation of using Java for our purpose consisted of the auto-
matic garbage collector, which is an excellent feature but with the limitation
that it cannot be controlled by the programmer. Because of this, in our proto-
types we developed algorithms that avoided to create new objects but rather
reuse existing ones to reduce the impact of the garbage collection phase. We
believe that such approach was fundamental in order to achieve the perfor-
mance reported in this thesis and should be kept in mind for similar problems.

Also, since web-scale reasoning is essentially a data-intensive problem, an
efficient memory management strategy is necessary in order to exploit all the
resources of the hardware. In our case, we realized that sometimes the standard
Java data structures are not appropriate because they are designed to be
efficient only if the data is limited and become prohibitively expensive if the
input is too large. For example, we experienced that already storing few
millions of objects in a map was enough to fill several gigabytes of space in
main memory with the standard Java HashMap. To solve this problem, we
had to implement custom hash maps which were less memory expensive and
rely on data marshaling on byte buffers to avoid the creation of new objects.

Another aspect that cannot be ignored is the storage of the data on disk. In
fact, an application that stores the data only in main memory is limited by the
size of the machine’s memory and this impacts its scalability. Because of this,
we had to store the data on disk and this required us to implement mechanisms
to quickly retrieve the data from it. To this purpose, we used fast compression
algorithms like LZO or Google Snappy to compress the data, instead of more
efficient algorithms like Bzip2 which are computationally expensive.

Finally, tuning the configuration of the execution environment has also
proven to be crucial in the evaluation. For example, the number of Hadoop
mappers and reducers per node or the activation of the data compression for
the intermediate results can radically change the performance of WebPIE.
In QueryPIE, the size of the internal buffers is a very important parameter,
because larger buffers are more difficult to allocate (and might require a call
to the garbage collector), while smaller ones get filled more easily.

All these considerations are only examples of the technical problems that
we had to solve. All of them do not have a real scientific value because they
are commonly known and addressed in existing high-performance applications.
Nevertheless, they are necessary components in the scientific process and this

158 Conclusions: Towards a reasonable Web

makes the problem of web-scale reasoning very sensible to software engineering
issues.

We would like to point out that this has substantial consequences for the
evaluation. For example, it is impossible to perform a formal verification of
a complex implementation and the correctness can be measured only with an
empirical analysis. Also, more complex implementations have higher chances
to contain bugs (current industry-delivered code contains on average 10-50
bugs per 1000 lines of code∗).

Yet, this task is necessary, especially in our context because too many
external factors can influence the performance. Because of this, with our third
and final law we intend to redefine reasoning not only as a pure research
question but also as an important engineering problem. In doing that, we aim
to elevate the engineering efforts that are necessary to implement web-scale
reasoning as an important contribution to solve this problem and warn that
a wrong implementation can radically change the outcome of the evaluation
and therefore of the proposed method.

7.4 Conclusions

The research question that drove the research presented in this thesis was:
“How can we perform reasoning to enrich query results over a very large
amount of data (i.e. on a web-scale) using a parallel and distributed system?”

Such research question was motivated by the fact that a distributed ap-
proach might be able to provide for the computational power necessary to
perform reasoning over a very large amount of data with a scalability that
could deal with the exponential growth of RDF data on the Web.

Summary. In this thesis, we answered this research question by presenting
a number of methods that tackles specific issues of this problem. In the first
part of this thesis, we proposed a technique to implement forward-chaining
reasoning using MapReduce. Then, we described a technique to improve the
performance of reasoning by compressing the input data using dictionary en-
coding. In the fourth chapter, we proposed a technique that uses Pig to query
the data with very complex queries. All these techniques rely on the MapRe-
duce programming model which is currently one of the most used programming
models used to process very large amount of data.

In the second part of this thesis we moved our focus to backward-chaining
and proposed in Chapter 5 a technique to reduce the reasoning computation to

∗http://amartester.blogspot.nl/2007/04/bugs-per-lines-of-code.html

http://amartester.blogspot.nl/2007/04/bugs-per-lines-of-code.html

7.4 Conclusions 159

be performed at query time. In Chapter 6, we showed how this technique can
be implemented in a distributed setting and integrated in a simple SPARQL
prototype.

Finally, in this last chapter we took a distance from our technical contri-
bution trying to understand what makes our approaches “work” and what can
limit their performance. We identify three crucial components behind the per-
formance of our reasoning methods: the replication of the schema, the handling
of data skew by ad-hoc data partitioning, and the engineering effort which is
a required component to implement prototypes which are robust enough to
work on a large scale.

Limitations. While we gave a concrete demonstration of web-scale reason-
ing, we have identified some important limitations in our approaches that
require future work and that make in our opinion web-scale reasoning still an
open issue.

First of all, in the context of forward-chaining our work relies on some
assumptions (e.g. small size of the schema) that might not hold on future
data. Also, our approach is unable to compute the closure if there is data which
generates an explosion of the derivation. Usually such data are indications of
syntactic or semantic mistakes, and a good practice would be to ignore it.
However, our approach is not robust enough to identify it beforehand and
future work is necessary to address this problem.

In the context of backward-chaining, our hybrid method performs well
with selective queries (i.e. queries that retrieve and process relatively little
amount of data). However, for larger queries the computation required by the
backward-chaining algorithm becomes too expensive to be carried out in the
interactive time. Also, in our implementation we have excluded the sameAs
rules pointing out that they can be handled by maintaining a sameAs table
as it is commonly done in other existing reasoners. Future work is necessary
to identify a more efficient way to integrate them in the backward-chaining
process since they are of great importance in our context.

The implementation of our hybrid-reasoning method in a distributed set-
ting and integrating it into a SPARQL engine shows that the main limitation
for efficient performance is in the transmission of intermediate data between
the nodes and the synchronization mechanisms that are necessary to execute
rules of the third and fourth type. While our caching strategy reduces the
amount of data that is sent over the network, still the performance can be
greatly improved if these issues are addressed with more efficient solutions.
Another direction for future research consists of integrating inference in the

160 Conclusions: Towards a reasonable Web

other operations that are normally operated with SPARQL like projections
or filtering. Finally, an efficient mechanism to estimate the data cardinality
is a fundamental piece to provide for a realistic integration of inference and
SPARQL query processing.

Conclusions. In this thesis, we hope to have provided for a valid contribu-
tion to solve the very challenging problem of web-scale reasoning.

Looking back at the results presented in the previous chapters, we believe
that we have shown that web-scale reasoning is indeed possible and that a
distributed approach is a viable option to perform this task on an ever-growing
amount of data, even some limitations still persist. Therefore, we argue that
web-scale reasoning is no longer something that needs to be proved, but rather
something that needs to be improved. To this end, future research is needed
and requires multi-disciplinary expertise in order to solve all the issues that
such a problem poses.

161

Part IV

Appendices

163

Appendix A

MapReduce Reasoning algorithms

We report on the MapReduce algorithms corresponding to the optimizations
discussed in Sections 2.2 and 2.3 of Chapter 2. In Appendices A.1 and A.2
we report on the algorithms for RDFS and OWL reasoning respectively. For
clarity purposes, we do not describe the algorithms in details but more on
a higher level, using pseudo code instead of a real language. As usual, our
pseudocode omits details that are not essential for human understanding of
the algorithm, such as variable declarations, datatypes and some subroutines.∗

A.1 RDFS MapReduce algorithms

We grouped the RDFS rules in four MapReduce jobs, to which we will refer
to as SUBPROP, DOMAINRANGE, SUBCLASS and SPECIAL CASES. These jobs are
executed in sequence as described in Algorithm 17. The last job is not always
executed because it refers to a special case that rarely occurs.

In the remaining of this section we discuss each of these reasoning algo-
rithms.

∗http://en.wikipedia.org/wiki/Pseudocode

http://en.wikipedia.org/wiki/Pseudocode

164 MapReduce Reasoning algorithms

SUBPROP applies rules 5 and 7, which concern sub-properties, and is
reported in Algorithm 18. Since the schema triples are loaded in memory,
these rules can be applied simultaneously. To avoid generation of duplicates,
we follow the principle of setting as the tuple’s key the triple’s parts that are
used in the derivation. This is possible because all inferences are drawn on an
instance triple and a schema triple and we load all schema triples in memory.
That means that for rule 5, we output as key the triple’s subject while for rule
7 we output a key consisting of the subject and object. We add an initial flag
to keep the groups separated since, later, we have to apply a different logic
that depends on the rule. In case we apply rule 5, we output the triple’s object
as value, otherwise we output the predicate.

The reducer reads the flag of the group’s key and applies to corresponding
rule. In both cases, it first filters out the duplicates in the values. Then, it
recursively matches the tuple’s values against the schema and saves the output
in a set. Once the reducer has finished with this operation, it outputs the new
triples using the information in the key and in the derivation output set.

DOMAINRANGE applies rules 2 and 3, as shown in Algorithm 19.
We use a similar technique as before to avoid generating duplicates. In this
case, we emit as key the triple’s subject and as value the predicate. We also
add a flag so that the reducers know whether they have to match it against
the domain or range schema. Pairs about domain and range will be grouped
together if they share the same subject since the two rules might derive the
same triple.

SUBCLASS applies rules 9, 11, 12, and 13, which are concerned with
sub-class relations. The procedure, shown in Algorithm 20, is similar to the
previous job with the following difference: during the map phase, we do not

Algorithm 17 RDFS overall algorithm

1 rdfs_reasoning(data) {
2 derived=apply_job(data, SUBPROP);
3 derived+=apply_job(data + derived, DOMAINRANGE);
4 derived=clean_duplicates(data, derived);
5 derived+=apply_job(data + derived, SUBCLASS);
6 if (derived_special_cases_no_loop(derived) == true)
7 derived+=apply_job(data + derived, SPECIAL_CASES);
8 if (special_cases_with_loop_occur(derived) == true)
9 derived+=rdfs_reasoning(data + derived);

10 return derived
11 }

A.1 RDFS MapReduce algorithms 165

Algorithm 18 RDFS sub-property reasoning (SUBPROP)

1 map(key, value):
2 if (subproperties.contains(value.predicate))
3 key = "1" + value.subject + "-" + value.object
4 emit(key, value.predicate)
5 if (subproperties.contains(value.object) && // for rule 5
6 value.predicate == "rdfs:subPropertyOf")
7 key = "2" + value.subject
8 emit(key, value.object)
9

10 reduce(key, values):
11 values = values.unique // filter duplicate values
12
13 switch (key[0])
14 case 1: // we are doing rule 7: subproperty inheritance
15 for (predicate in values)
16 // iterate over the predicates emitted in the map and collect superproperties
17 superproperties.add(subproperties.recursive_get(value))
18 for (superproperty in superproperties)
19 // iterate over superproperties and emit instance triples
20 emit(null, triple(key.subject, superproperty, key.object)
21 case 2: // we are doing rule 5: subproperty transitivity
22 for (predicate in values)
23 // iterate over the predicates emitted in the map, and collect superproperties
24 superproperties.add(subproperties.recursive_get(value))
25 for (superproperty in superproperties)
26 // emit transitive subproperties
27 emit(null, triple(key.subject, "rdfs:subPropertyOf", superproperty))

filter the triples which match with the schema but forward everything to the
reducers instead. In doing so, this job also eliminates the duplicates against
the input and we do not need to launch an additional job after this. The
pseudocode of Algorithm 20 does not mention the computation of rules 12
and 13, because their execution is trivial.

SPECIAL CASES refers to the special cases when rules 12 and 13
derive information which might fire rules 5, 7, 9 and 11. During the map
phase, it loads in memory the subproperties of rdfs:member and the subclasses
of rdfs:Literal and it performs the join between the triples in input with this
schema. During the reduce, the job materializes the results of this join. Since
this algorithm does not introduce any new challenges, we do not report the
pseudocode.

166 MapReduce Reasoning algorithms

Algorithm 19 RDFS domain and range reasoning (DOMAINRANGE)

1 map(key, value):
2 if (domains.contains(value.predicate)) then // for rule 2
3 key = value.subject
4 emit(key, value.predicate + "d")
5 if (ranges.contains(value.predicate)) then // for rule 3
6 key = value.object
7 emit(key, value.predicate +’’r’’)
8
9 reduce(key, values):

10 values = values.unique // filter duplicate values
11 for (predicate in values)
12 switch (predicate.flag)
13 case "r": // rule 3: find the range for this predicate
14 types.add(ranges.get(predicate))
15 case "d": // rule 2: find the domain for this predicate
16 types.add(domains.get(predicate))
17 for (type in types)
18 emit(null, triple(key, "rdf:type", type))

Algorithm 20 RDFS sub-class reasoning (SUBCLASS)

1 map(key, value):
2 if (value.predicate = "rdf:type")
3 key = "0" + value.subject
4 emit(key, value.object)
5 if (value.predicate = "rdfs:subClassOf")
6 key = "1" + value.subject
7 emit(key, value.object)
8
9 reduce(key, values):

10 values = values.unique // filter duplicate values
11
12 for (class in values)
13 superclasses.add(subclasses.get_recursively(class))
14
15 switch (key[0])
16 case 0: // we are doing rdf:type
17 for (class in superclasses)
18 if !values.contains(class)
19 emit(null, triple(key.subject, "rdf:type", class))
20 case 1: // we’re doing subClassOf
21 for (class in superclasses)
22 if !values.contains(class)
23 emit(null, triple(key.subject, "rdfs:subClassOf", class))

A.2 OWL MapReduce algorithms 167

Algorithm 21 Overall OWL reasoning algorithm

1 owl_readoning(data):
2 boolean first_time=true;
3 while (true) {
4 derived=rdfs_reasoning(data);
5 if (derived == null && first_time == false)
6 return data;
7 data= data + derived;
8
9 do { // Do fixpoint iteration for ter Horst rules

10 derived=apply_job(data, NOT_RECURSIVE_JOB);
11 derived+=apply_recursevily_job(data + derived, TRANSITIVITY_JOB);
12 derived=clean_duplicates(data, derived);
13 derived+=apply_recursevily_job(data + derived, SAME_AS_TRANSITIVITY_JOB);
14 derived=clean_duplicates(data, derived);
15 derived+=apply_job(data + derived, SAME_AS_INHERIT_1_JOB);
16 derived+=apply_job(data + derived, SAME_AS_INHERIT_2_JOB);
17 derived+=apply_job(data + derived, SAME_AS_INHERIT_3_JOB);
18 derived=clean_duplicates(data, derived);
19 derived+=apply_job(data + derived, EQUIVALENCE_JOB);
20 derived+=apply_job(data + derived, HAS_VALUES_JOB);
21 derived=clean_duplicates(data, derived);
22 derived+=apply_job(data + derived, SOME_ALL_VALUES_JOB);
23 derived=clean_duplicates(data, derived);
24 data= data + derived; }
25 while (derived != null);
26 first_time=false;
27 }

A.2 OWL MapReduce algorithms

OWL reasoning requires launching jobs in a loop until the rules stop deriving
any conclusion. In Algorithm 21, we report the overall reasoning algorithm.
It consists of a main loop where it first executes all the RDFS rules (see the
previous section) and then executes the OWL rules until all rules do not derive
anything anymore.

The OWL rules are implemented in ten MapReduce jobs. We describe each
of them in the remainder of this section.

NOT RECURSIVE JOB executes rules 1, 2, 3, and 8 and is reported
in Algorithm 22. These rules can be grouped and executed together. Their
execution exploits the optimizations presented for the RDFS fragment. The
instance triples are filtered during the map phase using the schema loaded in
memory. The partitioning is done to avoid duplicates and the reduce function
materializes the new triples.

168 MapReduce Reasoning algorithms

TRANSITIVITY JOB executes rule 4 and is reported in Algorithm 23.
The map function filters out all the triples that do not have a transitive pred-
icate by checking the input with the in-memory schema and it selects the
triples which suit the possible join by checking their distance value. The re-
duce function simply loads the two sets in memory and returns new triples
with distances corresponding to the sums of the combinations of distances in
the input.

SAME AS TRANSITIVITY JOB executes the logic of rule 7 to build
the sameAs table and is reported in Algorithm 24. The sameAs triples are
partitioned across nodes and the outgoing edges of a node are replaced by the
incoming edge from the node with the lowest id, if such a node exists. This
process is repeated until no edges can be replaced.

SAME AS INHERIT * JOBS is a sequence of three jobs that encode
the logic of rule 11 and replace in the input triples every resource that appear
in the sameAs table with its corresponding canonical representation. The first
job counts the resources and identifies the most popular one. This is done
to prevent load balancing issues in the following jobs. The second and third
jobs perform the replacements. The replacements are done by deconstructing
the statements and executing the join between the sameAs table and the
input triples in the classical way. We do not report the pseudocode of these
jobs because the technique is completely analogous to the data decompression
technique described in Chapter 3 with the only difference being that here we
perform the join against the sameAs table and not the dictionary.

EQUIVALENCE JOB executes rules 12 and 13. The algorithm is not
reported because its implementation is straightforward. These rules work with
schema triples and therefore do not present any particular challenges. The
corresponding job loads the schema in memory and derives the information
without any duplicate derivations using the RDFS optimizations.

HAS VALUE JOB executes rules 14. Similarly, this algorithm per-
forms the join between the schema triples in the nodes’ main memory and
filters the instance triples during the map phase. The reduce phase simply
materializes the derivation while eliminating the eventual duplicates between
the derivation.

A.2 OWL MapReduce algorithms 169

Algorithm 22 OWL not recursive rules (NOT RECURSIVE JOB)

1 map(key, triple):
2 if (functional_properties.contains(triple.predicate)) then //Rule 1
3 emit({’F’,triple.subject,triple.predicate}, triple.object);
4 if (inverse_functional_properties.contains(triple.predicate)) then //Rule 2
5 emit({’F’,triple.object,triple.predicate}, triple.subject);
6 if (symmetric_properties.contains(triple.predicate)) then //Rule 3
7 emit({’S’,triple.subject,triple.object}, triple.predicate);
8 if (inverse_properties.contains(triple.predicate)) then //Rule 8
9 emit({’I’,triple.subject,triple.object}, triple.predicate);

10
11 reduce(key, values):
12 switch (key[0])
13 case ’F’ : for (value in values) do //Process rule 1 and 2
14 synonyms.add(value)
15 for (synonym in synonyms) do
16 emit(’synonyms.min_value, owl:sameAs, synonym);
17 case ’S’ : for (value in values) do //Process rule 3
18 emit(key.object, value, key.subject);
19 case ’I’ : for (value in values) do //Process rule 8
20 inverse_property = inverse_properties.get(value)
21 emit(key.object, inverse_property, key.subject);

SOME ALL VALUES JOB executes rules 15 and 16 and is reported
in Algorithm 25. It aims at reducing the size of the partitions by performing
the joins with the schema triples as soon as possible. We first perform the join
between the two schema triples. Then, we perform the join between the above
and either (u p x) or (x rdf:type w), calculating (v owl:someValuesFrom

w) on (v owl:onProperty p) on (u p x) and (x rdf:type w) on
(v owl:onProperty p) on (v owl:someValuesFrom w). Now, we have all
possible bindings for x and p. Thus, we can partition on (xv) and perform
the join during the reduce phase. The algorithm for (owl:allValuesFrom) is
analogous to this one and not reported for conciseness.

170 MapReduce Reasoning algorithms

Algorithm 23 OWL transitivity closure, p rule 4 (TRANSITIVITY JOB)

1 map(key, triple):
2 n = job_config.get_current_step();
3 if (key.step = 2^(n - 2) || key.step = 2^(n -1)) then
4 emit({triple.predicate, triple.object}, {flag=L, key.step, triple.subject});
5 if (key.step > 2^(n-2) then
6 emit({triple.predicate, triple.subject}, {flag=R, key.step, triple.object});
7
8 reduce(key, iterator values):
9 for(value in values) do

10 if (value.flag = ’L’)
11 leftSide.add({key.step, value.subject})
12 else
13 rightSide.add({key.step, value.object})
14 for(leftElement in leftSide)
15 for(rightElement in rightSide)
16 newKey.step = leftElement.step + rightElement.step //distance new triple
17 emit(newKey,triple(leftElement.subject, key.predicate, rightElement.object));

Algorithm 24 (SAME AS TRANSITIVITY JOB): OWL build sameAs table, p
rule 7

1 map(key,edge):
2 emit(edge.from,edge.to);
3 emit(edge.to,edge.from);
4
5 reduce(key,values):
6 toNodes.empty(); // edges to other nodes
7 foundReplacement = false
8 for(value in values)
9 if (value < key)

10 if (foundReplacement)
11 toNodes.add(key);
12 foundReplacement = true;
13 key = value;
14 else if (value > key) toNodes.add(value);
15 for(to in toNodes)
16 emit(null,{key,to});

A.2 OWL MapReduce algorithms 171

Algorithm 25 OWL someValuesFrom and allValuesFrom reasoning, p rule
15 and 16 (SOME ALL VALUES JOB)

1 map(key, triple):
2 joinSchema = join on the subject between someValuesFrom and onProperties triples
3 if (triple.predicate == "rdf:type")
4 if (triple.object in joinSchema.someValuesFromObjects)
5 entries = joinSchema.getJoinEntries(triple.object)
6 for (entry in entries)
7 emit({entry.p,triple.subject}, {type=typetriple, resource=entry.

onPropertySubject});
8 else if (triple.predicate in joinSchema.onPropertiesSet)
9 emit({triple.predicate,triple.object}, {type=generictriple, resource=triple.subject

});
10
11 reduce(key, values):
12 types.clear(); generic.clear();
13 for (value in values)
14 if (value.type = typetriple) types.add(value.resource)
15 else generic.add(value.resource)
16 for (v in types)
17 for (u in generic)
18 emit(null, triple(u, "rdf:type", v));

172 MapReduce Reasoning algorithms

173

Appendix B

SPARQL queries

B.1 Queries for Yahoo! use-case

Query 1

Select (count(?subj) as ?freq) (min(?subj) as ?example)

?CSct ?CSdi ?CSmx ?CSmi { {

Select ?subj (count(?subj) as ?CSct)

(count(distinct ?prop) as ?CSdi)

(max(?prop) as ?CSmx) (min(?prop) as ?CSmi) {

?subj ?prop ?obj }

Group By ?subj } }

Group by ?CSct ?CSdi ?CSmx ?CSmi

Order By desc(?freq)

Limit 10000

Query 2

SELECT ?p (COUNT(?s) AS ?count)

{ ?s ?p ?o } GROUP BY ?p ORDER BY ?count

Query 3

SELECT ?C (COUNT(?s) AS ?count)

{ ?s a ?C } GROUP BY ?C ORDER BY ?count

174 SPARQL queries

B.2 BSBM queries

Every query in the BSBM-BI benchmark contains some parameters that are replace
by values from the dataset. In the evaluation section of chapter 4, we have replaced
the parameters with the values reported below.

Query Parameter Value

1

Country1 http://downlode.org/.../

countries#GB

Country2 http://downlode.org/.../

countries#US

2 Product
http://.../dataFromProducer1/

Product5

3
ConsecutiveMonth 0 2008-03-11T00:00:00
ConsecutiveMonth 1 2008-04-11T00:00:00
ConsecutiveMonth 2 2008-05-11T00:00:00

4
ProductType http://.../instances/

ProductType2

5
ProductType http://.../instances/

ProductType2

6 Producer
http://.../dataFromProducer1/

Producer1

7

Country http://downlode.org/.../

countries#GB

ProductType http://.../instances/

ProductType2

8
ProductType http://.../instances/

ProductType2

http://downlode.org/.../countries#GB
http://downlode.org/.../countries#GB
http://downlode.org/.../countries#US
http://downlode.org/.../countries#US
http://.../dataFromProducer1/Product5
http://.../dataFromProducer1/Product5
http://.../instances/ProductType2
http://.../instances/ProductType2
http://.../instances/ProductType2
http://.../instances/ProductType2
http://.../dataFromProducer1/Producer1
http://.../dataFromProducer1/Producer1
http://downlode.org/.../countries#GB
http://downlode.org/.../countries#GB
http://.../instances/ProductType2
http://.../instances/ProductType2
http://.../instances/ProductType2
http://.../instances/ProductType2

B.3 LUBM queries 175

B.3 LUBM queries

N. Query

1. (?x :takesCourse :University0) (?x rdf:type :Student)
2. (?x :publicationAuthor :AssistantProfessor0) (?x rdf:type :Publication)
3. (?x :worksFor :University0) (?x rdf:type :Professor) (?x :name ?y1) (?x :emailAddress

?y2) (?x :telephone ?y3)
4. (?x :memberOf :University0) (?x rdf:type Person)
5. (AssociateProfessor0 :teacherOf ?y) (?y rdf:type :Course) (?x :takesCourse ?y) (?x

rdf:type :Student)
6. (?y :subOrganizationOf :University0) (?y rdf:type :Department) (?x :memberOf ?y)

(?x rdf:type :Student) (?x :emailAddress ?z)
7. (?x :takesCourse :GraduateCourse0) (?x rdf:type :Student)
8. (?x :subOrganizationOf :University0)

(?x rdf:type :ResearchGroup)
9. (?y :subOrganizationOf :University0) (?y rdf:type :Department) (?x :worksFor ?y)

(?x rdf:type :Chair)
10. (:University0 :hasAlumnus ?x) (?x rdf:type :Person)

176 SPARQL queries

Bibliography 177

Bibliography

[1] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach. Scalable Semantic Web
Data Management Using Vertical Partitioning. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 411–422. VLDB
Endowment, 2007.

[2] R. Abdel Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX: Run-time
Optimization of XQueries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 615–626. ACM, 2009.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[4] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz.
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies
for Analytical Workloads. PVLDB, 2(1):922–933, 2009.

[5] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”Bit” loaded: A
Scalable Lightweight Join Query Processor for RDF Data. In Proceedings of the
International World-Wide Web Conference, pages 41–50, 2010.

[6] H. E. Bal, J. Maassen, R. van Nieuwpoort, N. Drost, R. Kemp, N. Palmer,
T. Kielmann, F. J. Seinstra, and C. J. H. Jacobs. Real-World Distributed
Computing with Ibis. IEEE Computer, 43(8):54–62, 2010.

[7] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic Sets and Other Strange
Ways to Implement Logic Programs. In Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 1–15. ACM, 1985.

178 Bibliography

[8] D. Battré, A. Höing, F. Heine, and O. Kao. On Triple Dissemination, Forward-
Chaining, and Load Balancing in DHT based RDF stores. In Proceedings of the
VLDB Workshop on Databases, Information Systems and Peer-to-Peer Com-
puting (DBISP2P), 2006.

[9] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5):34–43, May 2001.

[10] BigData. http://www.bigdata.com/bigdata/blog/, 2012.

[11] Billion Triple Challenge Website. http://challenge.semanticweb.org, 2012.

[12] Bio2RDF. http://bio2rdf.org, 2012.

[13] B. Bishop and S. Bojanov. Implementing OWL 2 RL and OWL 2 QL rule-sets
for OWLIM. In Pro. of the 8th International Workshop OWL: Experiences and
Directions, 2011.

[14] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal
on Semantic Web and Information Systems (IJSWIS), 5(2):1–24, 2009.

[15] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: An Architecture
for Storing and Querying RDF Data and Schema Information. In Spinning the
Semantic Web, pages 197–222, 2003.

[16] M. Cai and M. Frank. RDFPeers: A scalable distributed RDF repository based
on a structured peer-to-peer network. In Proceedings of the International World-
Wide Web Conference, 2004.

[17] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990. ISBN 3-540-51728-6.

[18] DAS-3. http://www.cs.vu.nl/das3, 2012.

[19] data.gov.uk. http://data.gov.uk/linked-data, 2012.

[20] DBPedia. http://dbpedia.org, 2012.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In Proceedings of the USENIX Symposium on Operating Systems De-
sign & Implementation (OSDI), pages 137–147, 2004.

[22] K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of Reasoners
for large Ontologies in the OWL 2 EL Profile. Semantic Web Journal, 2(2):
71–87, 2011.

http://www.bigdata.com/bigdata/blog/
http://challenge.semanticweb.org
http://bio2rdf.org
http://www.cs.vu.nl/das3
http://data.gov.uk/linked-data
http://dbpedia.org

Bibliography 179

[23] O. Erling and I. Mikhailov. Virtuoso: RDF Support in a Native RDBMS. In
Semantic Web Information Management, pages 501–519. Springer, 2009. ISBN
978-3-642-04328-4.

[24] FactForge. http://www.factforge.com, 2012.

[25] Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable Distributed Ontology
Reasoning Using DHT-based Partitioning. In Proceedings of the Asian Semantic
Web Conference (ASWC), 2008.

[26] J. D. Fernández, C. Gutierrez, and M. A. Mart́ınez-Prieto. RDF Compres-
sion: Basic Approaches. In Proceedings of the International World-Wide Web
Conference, pages 1091–1092. ACM, 2010. ISBN 978-1-60558-799-8.

[27] M. Gallego, J. Fernández, M. Mart́ınez-Prieto, and P. Fuente. An Empirical
Study of Real-World SPARQL Queries. In 1st International Workshop on Usage
Analysis and the Web of Data (USEWOD2011) at WWW 2011, 2011.

[28] S. Ganguly, P. Gibbons, Y. Matias, and A. Silberschatz. Bifocal Sampling for
Skew-Resistant Join Size Estimation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 271–281. ACM, 1996.

[29] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanamurthy, C. Ol-
ston, B. Reed, S. Srinivasan, and U. Srivastava. Building a High-Level Dataflow
System on top of Map-Reduce: the Pig Experience. In Proceedings of the In-
ternational Conference on Very Large Data Bases (VLDB), volume 2, pages
1414–1425. VLDB Endowment, 2009.

[30] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics, 3:158–182, 2005.

[31] Hadoop. http://hadoop.apache.org, 2012.

[32] O. Hartig, C. Bizer, and J. Freytag. Executing SPARQL Queries over the Web
of Linked Data. In Proceedings of the International Semantic Web Conference
(ISWC), pages 293–309. Springer, 2009.

[33] P. Hayes, editor. RDF Semantics. W3C Recommendation, Feb. 2004.

[34] S. Heinz, J. Zobel, and H. E. Williams. Burst Tries: A Fast, Efficient Data
Structure for String Keys. ACM Transactions on Information Systems, 20:192–
223, 2002.

[35] A. Hogan, A. Harth, and A. Polleres. Scalable Authoritative OWL Reasoning
for the Web. International Journal on Semantic Web and Information Systems,
5(2), 2009.

http://www.factforge.com
http://hadoop.apache.org

180 Bibliography

[36] A. Hogan, J. Pan, A. Polleres, and S. Decker. SAOR: Template Rule Opti-
misations for Distributed Reasoning over 1 Billion Linked Data Triples. In
Proceedings of the International Semantic Web Conference (ISWC). Springer
Berlin / Heidelberg, 2010.

[37] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of Large RDF
Graphs. PVLDB, 4(11):1123–1134, 2011.

[38] M. F. Husain, P. Doshi, L. Khan, and B. Thuraisingham. Storage and Retrieval
of Large RDF Graph Using Hadoop and MapReduce. In M. G. Jaatun, G. Zhao,
and C. Rong, editors, Cloud Computing, volume 5931, chapter 72, pages 680–
686. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-
10664-4.

[39] Z. Ives and N. Taylor. Sideways Information Passing for Push-Style Query
Processing. In Proceedings of the International Conference on Data Engineering,
pages 774–783. IEEE, 2008.

[40] E. Jahani, M. J. Cafarella, and C. Ré. Automatic Optimization for MapReduce
Programs. PVLDB, 4(6):385–396, 2011.

[41] R. Kader, M. Van Keulen, P. Boncz, and S. Manegold. Run-time Optimization
for Pipelined Systems. In Proceedings of the IV Alberto Mendelzon Workshop
on Foundations of Data Management, 2010.

[42] Z. Kaoudi, I. Miliaraki, and M. Koubarakis. RDFS Reasoning and Query An-
swering on Top of DHTs. In Proceedings of the International Semantic Web
Conference (ISWC), 2008.

[43] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM – a Pragmatic Semantic
Repository for OWL. In Proceedings of the Conference on Web Information
Systems Engineering (WISE) Workshops, pages 182–192, 2005.

[44] V. Kolovski, Z. Wu, and G. Eadon. Optimizing Enterprise-scale OWL 2 RL
Reasoning in a Relational Database System. In Proceedings of the International
Semantic Web Conference (ISWC), pages 436–452. Springer, 2010.

[45] S. Kotoulas, E. Oren, F. van Harmelen, and F. van Harmelen. Mind the Data
Skew: Distributed Inferencing by Speeddating in Elastic Regions. In Proceedings
of the International World-Wide Web Conference, pages 531–540, 2010.

[46] G. Ladwig and T. Tran. Linked Data Query Processing Strategies. In Proceed-
ings of the International Semantic Web Conference (ISWC), pages 453–469.
Springer, 2010.

[47] Large triple stores wiki page. http://esw.w3.org/topic/LargeTripleStores,
2012.

http://esw.w3.org/topic/LargeTripleStores

Bibliography 181

[48] LarKC deliverable 5.2.2. http://hadoop.apache.org, 2012.

[49] LDSR. http://www.ontotext.com/ldsr/, 2012.

[50] K. Lee, J. H. Son, G.-W. Kim, and M.-H. Kim. Web document compaction by
compressing uri references in RDF and OWL data. In ICUIMC, pages 163–168,
2008.

[51] Linked Life Data. http://www.linkedlifedata.com, 2012.

[52] D. McGuinness, F. Van Harmelen, et al. OWL Web Ontology Language
Overview. W3C recommendation, 10:2004–03, 2004.

[53] B. S. Michel, K. Nikoloudakis, P. Reiher, and L. Zhang. URL Forwarding and
Compression in Adaptive Web Caching. In In Proc. of IEEE Infocom, pages
670–678, 2000.

[54] R. Mutharaju, F. Maier, and P. Hitzler. A MapReduce Algorithm for EL+.
In Proceedings of the 23rd International Workshop on Description Logics
(DL2010), Waterloo, Canada, 2010.

[55] H. Nagumo, M. Lu, and K. Watson. Parallel Algorithms for the Static Dic-
tionary Compression. In Proc. IEEE Data Compression Conf, pages 162–171,
1995.

[56] W. Nejdl. Recursive Strategies for Answering Recursive Queries-The RQA/FQI
strategy. In Proc. International Conference on Very Large Data Bases (VLDB),
pages 43–50, 1987.

[57] T. Neumann and G. Moerkotte. Characteristic Sets: Accurate Cardinality Esti-
mation for RDF Queries with Multiple Joins. In Proceedings of the International
Conference on Data Engineering, pages 984–994. IEEE, 2011.

[58] T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF
Graphs. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 627–640. ACM, 2009.

[59] T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19:91–113, 2010.

[60] A. Newman, Y. Li, and J. Hunter. Scalable Semantics the Silver Lining of
Cloud Computing. In Proceedings of the 4th IEEE International Conference on
eScience, 2008.

[61] M. K. Nguyen, C. Basca, and A. Bernstein. B+Hash Tree: Optimizing query
execution times for on-Disk Semantic Web data structures. In A. Fokoue,
T. Liebig, and Y. Guo, editors, Proceedings Of The 6th International Work-
shop On Scalable Semantic Web Knowledge Base Systems (SSWS2010), pages
96–111, November 2010.

http://hadoop.apache.org
http://www.ontotext.com/ldsr/
http://www.linkedlifedata.com

182 Bibliography

[62] Official statistics of Linked Data Website. http://esw.w3.org/TaskForces/

CommunityProjects/LinkingOpenData/DataSets/Statistics, 2012.

[63] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
A Not-So-Foreign Language for Data Processing. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 1099–1110.
ACM, 2008.

[64] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, and F. van Harme-
len. Marvin: Distributed reasoning over large-scale Semantic Web data. Journal
of Web Semantics, 7(4):305–316, 2009.

[65] H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient Query Answering for
OWL 2. In Proceedings of the International Semantic Web Conference (ISWC),
pages 489–504. Springer, 2009.

[66] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
Recommendation, 2008.

[67] P. Ravindra, V. Deshpande, and K. Anyanwu. Towards scalable RDF graph
analytics on MapReduce. In Proceedings of the 2010 Workshop on Massive
Data Analytics on the Cloud, page 5. ACM, 2010.

[68] M. Salvadores, G. Correndo, S. Harris, N. Gibbins, and N. Shadbolt. The
Design and implementation of minimal RDFS backward reasoning in 4store.
The Semanic Web: Research and Applications, pages 139–153, 2011.

[69] A. Schätzle and G. Lausen. PigSPARQL: Mapping SPARQL to Pig Latin. In
SWIM: the 3th International Workshop on Semantic Web Information Manage-
ment, 2011.

[70] A. Schlicht and H. Stuckenschmidt. Peer-to-peer reasoning for interlinked on-
tologies. International Journal of Semantic Computing, 4(1):27–58, 2010.

[71] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and C. Pinkel. An Experimen-
tal Comparison of RDF Data Management Approaches in a SPARQL Bench-
mark Scenario. In Proceedings of the International Semantic Web Conference
(ISWC), pages 82–97, 2008.

[72] C. Seitz and R. Schönfelder. Rule-Based OWL Reasoning for Specific Embedded
Devices. In Proceedings of the International Semantic Web Conference (ISWC),
pages 237–252, 2011.

[73] L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes, and S. Manegold. Column-
Store Support for RDF Data Management: not all swans are white. PVLDB, 1
(2):1553–1563, 2008.

http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics

Bibliography 183

[74] R. Soma and V. Prasanna. Parallel Inferencing for OWL Knowledge Bases. In
International Conference on Parallel Processing, pages 75–82, 2008.

[75] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo,
and A. Rasin. MapReduce and parallel DBMSs: friends or foes? Communica-
tions of the ACM, 53(1):64–71, 2010.

[76] P. Stutz, A. Bernstein, and W. Cohen. Signal/Collect: Graph Algorithms for the
(Semantic) Web. In Proceedings of the International Semantic Web Conference
(ISWC), 2010.

[77] Swoogle. http://swoogle.umbc.edu, 2012.

[78] H. J. ter Horst. Completeness, decidability and complexity of entailment for
RDF schema and a semantic extension involving the OWL vocabulary. Journal
of Web Semantics, 3(2–3):79–115, 2005.

[79] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyck-
off, and R. Murthy. Hive-A Warehousing Solution Over a Map-Reduce Frame-
work. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), 2009.

[80] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony,
H. Liu, and R. Murthy. Hive - A Petabyte Scale Data Warehouse using Hadoop.
In Proceedings of the International Conference on Data Engineering, pages 996–
1005, 2010.

[81] Uniprot. http://www.uniprot.org, 2012.

[82] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen. Scalable Distributed
Reasoning using MapReduce. In Proceedings of the International Semantic Web
Conference (ISWC), 2009.

[83] J. Urbani, S. Kotoulas, J. Maassen, N. Drost, F. Seinstra, F. van Harmelen,
and H. Bal. WebPIE: a Web-scale Parallel Inference Engine. 1st prize at the
3rd IEEE SCALE challenge at CCGrid, 2010.

[84] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. Bal. OWL reason-
ing with MapReduce: calculating the closure of 100 billion triples. In Proceedings
of the European Semantic Web Conference (ESWC), 2010.

[85] J. Urbani, J. Maaseen, and H. Bal. Massive Semantic Web data compression
with MapReduce. In Proceedings of the 1st MapReduce workshop at HPDC ’10,
2010.

[86] J. Urbani, S. Kotoulas, J. Maassen, F. V. Harmelen, and H. Bal. WebPIE: A
Web-scale Parallel Inference Engine using MapReduce. Journal of Web Seman-
tics, 10(0):59 – 75, 2012. ISSN 1570-8268.

http://swoogle.umbc.edu
http://www.uniprot.org

184 Bibliography

[87] J. Urbani, J. Maassen, N. Drost, F. Seinstra, and H. Bal. Scalable RDF data
compression with MapReduce. Concurrency and Computation: Practice and
Experience, 2012. ISSN 1532-0634.

[88] M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Logic as a
Programming Language. J. ACM, 23(4):733–742, 1976.

[89] L. Vieille. A Database-Complete Proof Procedure Based on SLD-Resolution. In
ICLP, pages 74–103, 1987.

[90] W3C Recommendation. OWL Web Ontology Language Overview: Why
OWL?, 10 February 2004. Available at http://www.w3.org/TR/2004/

REC-owl-features-20040210/#s1.2.

[91] W3C Recommendation. OWL 2 Web Ontology Language: Document Overview,
27 October 2009. Available at http://www.w3.org/TR/owl2-overview/.

[92] W3C Recommendation. OWL 2 Web Ontology Language Pro-
files, 27 October 2009. Available at http://www.w3.org/TR/2009/

REC-owl2-profiles-20091027.

[93] W3C Recommendation: RDF Primer. http://www.w3.org/TR/rdf-primer/,
2012.

[94] J. Weaver and J. Hendler. Parallel Materialization of the Finite RDFS Closure
for Hundreds of Millions of Triples. In Proceedings of the International Semantic
Web Conference (ISWC), October 2009.

[95] WebPIE. http://www.cs.vu.nl/webpie, 2012.

[96] C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Se-
mantic Web Data Management. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), volume 1, pages 1008–1019. VLDB Endow-
ment, 2008.

[97] H. Yang, A. Dasdan, R. Hsiao, and D. Parker. Map-reduce-merge: simplified
relational data processing on large clusters. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, page 1040. ACM, 2007.

[98] Y. Ye and P. Cosman. Dictionary design for text image compression with JBIG
2. IEEE Transactions on Image Processing, 10(6):818–828, 2001.

[99] J. Zobel, S. Heinz, and H. E. Williams. In-memory Hash Tables for Accumu-
lating Text Vocabularies. Information Processing Letters, 80:2001, 2001.

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027
http://www.w3.org/TR/rdf-primer/
http://www.cs.vu.nl/webpie

Samenvatting

Over Web-scale Reasoning

Het semantische web is een uitbreiding van het huidige wereldwijde web. In
het semantische web kan de betekenis van informatie door machines gëınterpreteerd
worden en de data worden opgeslagen als een verzameling van subject-predicaat-
object verbanden.

Op dit moment zijn er miljarden van dergelijke verbanden publiek beschikbaar
op het web. Deze verbanden beschrijven een zeer breed scala van informatie: van
biomedische informatie tot informatie afkomstig van regeringen. Hierbij worden URIs
vaak gebruikt om concepten ondubbelzinnig te kunnen identificeren en hergebruik in
gedistribueerde omgevingen, zoals het wereldwijde web, te stimuleren.

Een van de voordelen van het opslaan van informatie met gebruik van seman-
tische web technologieën is dat computers over de data kunnen redeneren en nieuwe
informatie kunnen afleiden. Dit proces, ook wel reasoning genoemd, wordt in toen-
emende mate uitdagender, vanwege de exponentiële groei van beschikbare data op
het web. In het begin van 2009 werd het aantal van dergelijke verbanden op het
semantische web geschat op 4,4 miljard. Een jaar later is de grootte van het web
verdrievoudigd naar 12 miljard verbanden en de huidige trend wijst er op dat een
dergelijke groei nog steeds plaatsvindt.

De onderzoeksvraag die in dit proefschrift beantwoord wordt, is: Hoe kunnen we
door de inzet van reasoning op een parallel en gedistribueerd systeem de resultaten
van zoekopdrachten over zeer grote hoeveelheden data verrijken?

Het proefschrift bestaat uit twee delen: in het eerste deel vindt reasoning plaats
door het toepassen van een verzameling van regels over de gehele invoerdata, teneinde
elke mogelijke conclusie over de gehele invoerdata te verkrijgen. Het tweede deel
behandelt een andere benadering waarin enkel die conclusies verkregen worden die
relevant zijn voor de zoekopdrachten van de gebruikers.

In het eerste deel van het proefschrift is het MapReduce programmeermodel ge-
bruikt om reasoning op een grootschalige manier uit te voeren en zodoende goede
prestaties te behalen. In het tweede hoofdstuk wordt een reeks van op MapReduce
gebaseerde reasoning-algoritmes gëıntroduceerd. In het derde hoofdstuk gebruiken
we hetzelfde programmeermodel om de invoerdata te comprimeren in een compactere
vorm, waardoor er efficiënter gerekend kan worden met de invoerdata. In het vierde
hoofdstuk gebruiken we Pig, een taal die voortbouwt op MapReduce, om grote
SPARQL zoekopdrachten te coderen. Op deze manier voorzien we in een compleet
systeem voor het afleiden van nieuwe informatie en het doen van zoekopdrachten,
waarbij eenzelfde systeemarchitectuur en programmeermodel wordt gebruikt.

In het tweede deel verplaatsen we de aandacht naar een vorm van reasoning die
wordt uitgevoerd wanneer een gebruiker een zoekopdracht uitvoerd in een kennis-
bank. In een dergelijke situatie kan MapReduce niet worden gebruikt aangezien de
uitvoering van een dergelijke MapReduce taak een lange wachttijd oplevert. Daarom

introduceren we een nieuwe hybride reasoning-techniek waarmee we alleen een klein
deel van de nieuwe informatie vooraf afleiden. Deze nieuwe informatie wordt tijdens
het uitvoeren van de zoekopdracht gebruikt om de rekentijd van de zoekopdracht in
te korten.

In het vijfde hoofdstuk analyseren we onze techniek van hybride reasoning vanuit
een theoretisch perspectief en verifiëren we of de aanpak correct en volledig is. In
het daaropvolgende hoofdstuk, hoofdstuk 6, beschrijven we een gedistribueerd en
parallel prototype van deze techniek en analyseren we de prestaties op het DAS-4
cluster met een standard benchmark.

In het laatste hoofdstuk van dit proefschrift leiden we een aantal principes, die
we als ”wetten” beschouwen, af uit de technische bijdragen die in de vorige hoofd-
stukken zijn gepresenteerd. Deze wetten zijn aantoonbaar geldig voor de huidige
data en zijn ook verantwoordelijk voor de resultaten die we behaald hebben in onze
experimenten. De wetten kunnen worden gebruikt om een beter begrip te krijgen van
de eigenschappen van het huidige onderwerp van reasoning op de schaal van het web
en kunnen gebruikt worden om verder onderzoek over dit onderwerp te bevorderen.

	Introduction
	Scope of research
	Summary of chapters
	Collaborations

	I Reasoning before query time
	Forward-chaining reasoning with MapReduce
	The MapReduce programming model
	A simple MapReduce example: term count
	Characteristics of MapReduce

	RDFS reasoning with MapReduce
	Example rule execution with MapReduce
	Problems of RDFS reasoning with MapReduce
	Loading schema triples in memory
	Data preprocessing to avoid duplicates
	Ordering the application of the RDFS rules

	OWL reasoning with MapReduce
	Challenges with OWL reasoning with MapReduce
	Limit duplicates when performing joins between instance triples
	Build sameAs table to avoid exponential derivation
	Perform redundant joins to avoid load balancing problems

	Evaluation
	Implementation
	Experimental parameters
	Dataset and reasoning complexity
	Scalability
	Platform

	Related work
	Conclusion

	Distributed RDF data compression
	Dictionary Encoding
	MapReduce Data compression
	Job 1: caching of popular terms
	Job 2: deconstruct statements, and assign IDs to terms
	Job 3: reconstruct statements
	Storing the term IDs

	MapReduce data decompression
	Job 2: join with dictionary table
	Job 3: join with compressed input

	Evaluation
	Runtime
	Performance of the popular-term cache
	Scalability

	Related work
	Conclusions and Future Work

	Querying RDF data with Pig
	SPARQL with Pig: overview
	Runtime query optimization
	Pig-aware cost estimation
	Dealing with Skew

	Evaluation
	Experiments

	Related Work
	Conclusions

	II Reasoning at query time
	Hybrid-reasoning
	Hybrid reasoning: Overview
	Hybrid Reasoning: Backward-chaining
	Our approach
	Exploiting the precomputation for efficient execution.

	Hybrid Reasoning: Pre-Materialization
	Pre-Materialization algorithm
	Reasoning with Pre-Materialized Predicates

	Hybrid reasoning for OWL RL
	Detecting duplicate derivation in OWL RL

	Evaluation
	Performance of the pre-materialization algorithm
	Performance of the reasoning at query time
	Discussion

	Related Work
	Conclusions

	Reasoning and SPARQL on a distributed architecture
	System architecture
	Data Storage
	Rule Execution
	SPARQL queries
	Evaluation
	Performance
	Scalability
	Efficiency

	Related Work
	Future Work and Conclusions

	III Discussion and conclusions
	Conclusions: Towards a reasonable Web
	1st Law: Treat schema triples differently
	2nd Law: Data skew dominates the data distribution
	3rd Law: Certain problems only appear at a very large scale
	Conclusions

	IV Appendices
	MapReduce Reasoning algorithms
	RDFS MapReduce algorithms
	OWL MapReduce algorithms

	SPARQL queries
	Queries for Yahoo! use-case
	BSBM queries
	LUBM queries

	Bibliography

